AJTHOR	Lankford, Francis G., Jr.
title	Some Computational Strategies of Seventh Grade Pupils. Final Report.
INSTITUTION	Virginia Univ., Charlottesville. School of Education.
SPONS AGENCY	National Center for Educational Research and Development (DHEW/OE), Washington, D.C.
bureau no	BR-2-C-013
PUB DATE	Oct 72
GRANT	OEG-3-72-0035
NOTE	96 p .
EDRS PRICE	MF-\$0.65 HC- \$3.29
DESCR IPTORS	*Algorithms: Fractions; Grade 7; Learning;
	*Mathematics Education; *Research; Secondary School
	Mathematics; Whole Numbers
IDENT IFIERS	*Computation; Diagnostic Interviews

ABSTRACT
One hundred seventy-six seventh grade students underwent a recorded interview where each was given a set of computational exercises and asked to say aloud his thinking as he worked them. The most frequently used strategies in computations with whole numbers and fractions are described in detail, an analysis of the nature of wrong answers is included, and characteristics of good and poor computers are listed and discussed. Thirteen conclusions are given, covering computational strategies, vertical vs. horizontal problem arrangement, mathematical vocabulary of students, estimating answers, and the technique of using recorded interviews in research. The computation problems given to the students are included in the report, and the appendices list all the wrong answers given with the accompanying verbal description by the student. (DT)

Final Report

Project number $9 . C \cdot 013$
Grant number OEG.e3.ig.0035

Francis G. Lankford, Jr.
School of Education
University of Virginia
Charlottesville, Virginia, 22903

Some Computational Strategies of Seventh Grade Pupils

October, 1972

U.S. Department of Health. Education. and Welfare Office of Education National Center for Educational Research and Development (Regional Research Program) and
The Center for Advanced Study The University of Virginia.

FIMAL RERORT

Project :'umber 2-C-013
Grant ilumber aEG-3-72-0035
soile coiputational strategies of seventh grade pupils

Francis G. Lankford, Jr. University of Virginia Charlottesville, Yirginia 22903

October 1972

The research reported herein was performed pursuant to a grant with the Office of Education, U.S. Department of Health, Education, and lelfare. Contractors undertaking such projects under Covernment Snonsorship are encouraged to express freely their professional judgement in the conduct of the project. Points of vie: or opinions stated do not, therefore, necessarily represent official Office of Education position or policy.
U.S. Department of Heal th, Education, and "elfare Office of Education Hational Center for Educational Research and Development and
The Center for Advanced Studies, The University of Mi rginia

The principal investigator received much heln and sunport in the work on the project renorted here. The Center for Advanced Studies at The University of Virginia marded an associateship which made it possible to devote an entire semester to the project. The U. S. Dffice of Education granted funds, through its Regional. Research program, which extended the time that fould be devoted to the project and covered other expenses.

The teachers and principals in the several schools arranged places for the pupil interviews and carefully scheduled the pupils to appear one at a time. Central office officials gave the essential approval to use the schools.

Hany colleagues in the School of Education at the University gave both help and encouragement. Special thanks are expressed to Dean Frederick R. Cyphert, and to Professors Richard M. Brandt, Milton D. Jacobson, Donald Medley, "illian !. Searell, Milliam C. Lowry, Donald H. Shoemaker, Earl P. Smith, as well as to research assistants !illiam !!are and James Hivir. Hr. Rod Collins in the Radio and Television Center at The University of Virginia was especially helpful in preparing taped records of samples of the pupil interviews.

Professor Joseph it. Payne at the University of Michigan gave valuable suggestions on the design and conduct of the study. He also reod the first draft of the report and offered helpful reactions.

Grateful acknowledgement of all the help that was so generously given is sincerely expressed.
Page
Introduction 1
Related Research 3
Methods and Procedures 5
The Pupils Interviewed 7
Exercises Used in Interviews 15
Results 16
Strategies Frequently Used in Four Operations with lithole ilumbers 20
Strategies Frequently Used in Four Operations with Fractions 24
: !ature of Urong Answers--! !hole Numbers 27
ilature of Vrong Answers--Fractions 30
Reasons Given for llrong Answers to Comparison Exercises with Fractions 33
Some Characteristics of Good and Poor Computers 35
Conclusions 40
Recommendations 42
Appendix 1 . :Irong Answers--l:hole : :umbers A-1
Appendix B. !'rong Answers--Fractions B-1
Appendix C. :/rong Answers--Comparison Exercises and Reasons for Choices C-1

Introduction

It is encouragine that currently there is mides.aread interest in improving the computational skills of pupils--especially in the elementary fand early secondary years. This interest has fnund expression in numerous experimental efforts to individualize instruction in computational skills. It may have been stimulated by the calls to "accountability: in the schools and the adontion of performance contracting.: The relatively low scores of many pupils on the computational skills part of stardardized achi ivement test batteries which have been seen in many schools may also have supported this interest.
i!any of the experimental pronrams have started with a detailed analysis of the tasks, or skills, in computation-placing them in many, categories related to the content of the:operations involved. Dften the next sted in the tesign of $\dot{0}$ pre-test to locate the particular tasks or skills a pupil does incorrectly. Remedial exercises--associated with variously designed programmed instruction-are keyed to the pre-test. Then follows a post-test--similar to the pre-test--intended to show whe ther or not the pupil can now derform at a satisfactory level.
${ }^{1}$ An example may be taken from the work of Patrick Suppes of Stanford University who has done extensive research in computer assisted Instruction. In a Teacher's Handbook for CA! Courses (Technical Report lo. 173, Sept. T, Tā7, Institute for iathematical Studies in the Social Sciences, Stanford University) 14 "strands" in arithmetic are listed. nne of these is the "Horizontal Subtraction Strand." The content of this strand is summarired as follows. (P. 13)

Differences in canonical and noncanonical format.
Haximuni minuend is 9 Haximum minuend is 10
Problems with two-dig̣it minuends in canonical format Problems with one-digit minuends in noncanonical format Problems with two-digit minuends equal to or less than in noncanonical format
Problems with minuends greator than 19 in nonoanonical format Problems with a difference on both sides or, eo:ial sign
(a) The problem 4-0 = ? is in cimonical format The problem $7-\ldots=7$ is in noncanonicai format.

An example of an exr:riment in such an individualized nrogran is tise !niviguelige! "athentics system develoned at The Regional Education Laboratory ion tie Carol nas and Virsinia. In this system the elementary school curric.lum is divided into 11 topics; each topic is divided into nine levels of difficulty, and for each level of difficulty there are a number of snecific skills. 'Sy dividing tile work into units of skills, mathematics is presented as a series of snall, related tasks. . . ."

A placement test determines the topic on which a punil begins work, and at what level of difficulty. "Progress is evaluated by short check-up tests following each skill folder, and then by a post-test covering all the skills assinned for the unit."

Commercially available diagnostic tests are also of ten arranged by type or class of computational exercise. Scores may reveal, for example, that a pupil is weak in adding fractions of any one or more of these classes: (1) denominators the same, (2) one denominator, the common denominator, (3) neither denominator, the common denominator, (4) mixed number plus a fraction, (5) mixed number plus mixed number.

The study reported here was prompted by the belief that pupils vary not only in the types of computational exercises they can do successfully but also in the computational strategies they employ. It was thought that these strategies are highly individualized and that they are of ten not revealed in the pencil and paper answers to test items or diagnostic exercises. If some insight could be gained into the thinking sequence followed by a pupil as he computes, perhaps some clues might be obtained as to when and how this thinking becomes faulty. It was expected that such "patterns of thinking" minht of ten be quite unorthodox but for a particular pupil a satisfactory substitute for orthodoxy; while for another puil a favorite strategy could be faulty arithmetically and destined to yield incorrect answers. it was further expected that computational stratenies of successful computers differ substantially from those of unsuccessful computers.

Problems with a regroud in canonical format
Problems without a regroup in noncanonical format
Problems with difference on both sides of equal sign.
The Individualized !!athematics System. Renional Education Laboratory for the Carolinas and Virginia. Chapel Hill and nuke Streets, Durham, Jorth Carolina.

In brief this study was designed to examine these basic assumptions.

1. Patterns of thinking--comutational strategies--which pupils develop in their study of elementary mathematics are highly individualized and often do not follo: the orthodox models of texthook and classrom.
2. There are observable differences in the patterrs of thinking--computational strategies-of successful computers and unsuccessful ones.
3. Clues for remedial teaching of computational skills may be derived from an examination of the natterns of thinking-comoutational stratenies--of pupils who are unsuccessful computers.

In the original design of this study it was hoped that this question could also be examined, i.e., ivhat effects on patterns of thinking--computational strategies--are resulting from some of the current efforts to teach low achievers in mathematics? Limitations of time and monpower made it impossible to seek an answer to this question in this study. It is hoped that it can be explored in a subsequent study.

Related Research
Over the fourteen year period in 1957-1970 there appeared annually in The Arithmetic Teacher a list of research, completed the previous year, on elementary mathematics, grades $K-s$. In 1071 this series was continued in the Journal for Research in llathematics Education-including items of research at the secondary level. In all, these 11 lists contained 931 items. These lists together with the annotations were examined for the years 1960 through 1970^{2} in an effort to locate studies that used individual pupil interviews to analyze computational strategies of nupils.
'Suydam, Marilyn i:'. and Meaver, J. Fred. 'Research in Mathematics Education ($k-12$).' Reported in 1970 Journal for Research in Mathematics Education, Vol. 2, Ho. 4, Hovember, 1972, pp. 257299.

2'leaver, J. Fred. :'Research on Elementary School Mathematics," Arithmetic Teacher. For 1960 in May, 1961, p!. 255-250 and Octobër, 1961, pp. 301-307; for 1961 in :lay, 19fs2, pp. 297290; for 1262 in May, 1963, np. 297-300; for 1963 in April, 1964, pp. 273-275; for 1964 in llay, 1365, pp. 382-387 and :lovember, 1365,
in addition all the quarterly issues of The Journal of Research in Hathematics Education since its inception in January, 1070 were revieved.

The research most closely related to the study reported here was a dissertation completed by Millerl at Indiana University in 1360. She recorded intervievs with 40 sixth grade nupils and analyzed the responses in four categories. There was no detailed analysis of the computational strategies used. There have been diagnostic studies intended to identify computational strategies but using written responses of nupils instead of both oral and written responses as in the study reported here. An example is the study reported by Roberts. 2 He examined the written work of selected third grade pupils "(1) To determine the computational skills in which Third Grade Pupils were most deficient, and (2) To discover if any generalizations could be derived about punils' failure strategies."

Admittedly this review of research has been more extensive than intensive. If a more careful revieli had been possible, doubtless other related studies might have been located. However, it seems safe to assert that the study here reported does not duplicate any research listed or reperted in the sources mentioned above for the period 1960 through 1970.

กp. 577-578; for 1965 in May, 1266, pp. 414-427; for 1966 in October, 1967, pp. 509-517; Reidesel, C. Allan, Suydam, !larilyn N. and Pikaart, Lin, 'Research on Mathematics Education $\mathrm{K}-9$ for 1967," Arithmetic Teacher, Octoher, 1963, pp. 531-544; Reidesel, C. Allan and Suydam, llarilyn !!., 'Research on llathematics Education Grades K-3 for 1968," Arithmetic Teacher, October; 1:69, PP. 467-478; Suydem, Narilyn :1., "Research on Mathematics Education Grades K-8 for 1969, Arithmetic Teacher, October, 1970, pp. 511527.
'ililler, Frances Pauline, "An Analysis of Sixth Grade Pupils' Thinking Regarding Their Solution of Certain Yerbal Arithmetic Problems,' Dissertation Abstracts, Vol. 21, September, 1960, p. 503.

2Roberts, G. H., :The Failure ${ }^{\text {Etrateqies of Third Girade }}$ Arithmetic Pupils." Arithmetic Teacher, Vol. XV, llay, 13G8, pp. 442-44C.
:That is being called a diag̣ostic interviev' was the method employed for obtaining basic data used in this study. In a room where pupil and interviewer may work alone and undisturbed the punil is asked to do a set of computational exercises as he usually does them but to say aloud his thinking as he computes. The explanation of what is requested of the nupil goes something like this.
'On these sheets are some exercises in arithmetic. They are just like those you have done many times--in earlier grades--or even in class this year. I want you to do them exactly as you usually do when you do homework or have seatwork in class. If you use scratch paper, there is plenty of space on these sheets for any scratchwork you wish to do. If any of these exercises are written in a way that you are not accustomed to, rewrite them so they are in a form that you like to work with. The only nev thing l ask you to do is to say out loud what you are thinking as you do your work. Just 'talk to yourself as you work.' I suspect that you of ten do this anyway when you are working alone. I do. ily reason for wanting 'to hear what you are thinking' is that if you qet an incorrect answer I can better decide just where your thinking went wrong and perhans can suggest scme help after we are through. Even if you don't make any mistakes, I still want to know what your thinking is for this may or may not be what you should continue to use. l!ow let's start with this first exercise. :What does it. say to do? Read it and do it."

Experience has indicated that better results are obtained from the interviews if these simple quides are followed:

1. A verbatim recording of the interview is made on cassette tape. A recorder with built in microphone is preferred. It should be in place before the pupil comes for the interview. After the preliminary explanations of procedure--described above--the recorder should be turned on without comment. To refer to the recorder in any way proves to be distracting. otherwise the punil soon forgets it is present.
2. Let the pupil's first activity be to write his name and date. Scrupuously avoid any use of the pupil's name in the interview. This means that the tape can be used later completely anonymously. Label the tape with the pupil's name, or otherwise, so the oral record can later be matched with the uritten record and other data such as test results.
3. rive oninil the preferred seat at a desk or table. The interviterer sien! $\because i$: on tie lert side of a rinhthanded pupil and the right side of a left-handej pupil. This provides easier view of his work.
4. As the punil starts, have him read the first exercise alous. This helns him to start talking comiortably. Let the first exercise be simple enough that he is almost sure to get the correct answer. Compiiment him on his correct answer. It may be necessary to give the nupil further instructions as he nroceeds such as "sneak a little louder" or "be sure to tell me each step you take."
5. Have the pupil read the caption and each exercise before he undertakes it. This gives a good record of his vocabulary and how his reading of the exercise is reiated to the computational strategy he uses.
6. Excessive directions can be distractinn. It is better not to interrunt the nupil as he computes. Uhen he has finished and written an answer it is better then to ask him questions that require him to clarify or elaborate his thinking.
7. Carefully observe points when the nupil hesitates and does some mental calculation silently before proceeding further. After he has finished the exercise, go back to these points and ask for an oral report of his thinking. For example, in column addition a pupil may say. 18 and 8 are 16 plus 1 is 17 and hesitate as he adds $17+9$ to get 26 ." Uhen asked "how did you get 17 and 9 to be $267^{\prime \prime}$ he may reply thought $17+3$ is 20 and 6 is $26^{\prime \prime}$ or "I thought $17+10$ is 27 and 1 less is $26, "$ or "i thought $9+7$ is if and 1 and 1 are 2.1
8. When a pupil makes a mistake at any stage in an nperation he should not be interrupted in any way. It must be remembered at all times that a diagnostic interview is not a teaching exercise in which pupils are led to correct their errors through a series of Socratic type questions. He must be left free to proceed in his own way with never a hint ithat it may be wrong. Some pupils will ask the interviewer "is that right?" He must evade an answer and encourage the nupil to proceed in his own way. After an exercise is finished, a pupil may be asked to repeat a step in which he made an error. If he repeats the error, it is not likely to have been a careless one. He is not asked to reneat because he made an error, but so the interviewer may understand more clearly what he did.
9. :then a nunil discovers an error either on his owly as he proceeds or after he finishes and is asked to redeat a siep, he usually wants to erase and correct. Instead he should be directed to mark throunh the error and write the correction to the side. Later when the tape is replayed, the oral record then matches the written record.
10. Avoid giving clues or ieading the pupil throuc̣h a series of questions--program style.
11. '!hen a punil's words have been indistinct, the interviewer should, after an exercise is comnleted, repeat the child's words as faithfully as oossible to get a usable record.
12. Do not hurry a pupil. Allow him as much time as he wishes on a single exercise. If time must be controlled, do so by reducing thie number of exercises the punil is asked to do.

In addition to the recordings of the oral comments during the interviews the punils'ivork paners--including all scratch work-were retained and used in the analysis of responses.

The Pupils Interviewed

The pupils interviewed numbered 176 and were enrolled $\mathbf{i n}$ sife schools located in Richmond, Virainia: "orthumberland County, Virginia (a rural county in Eastern Virginia); Atlanta, Georgia: U'ashington, D. C.; Cetroit, Hichigan, and Denver, Colorado. All pupils were enrolled in the seventh grade. The interviews were conducted during the months of February, :larch and April of 1072. In each school a siṇle class, or section, was closen representative of the nid-range of achievement and ability. Most of these pupils were interviewed. A fev were absent during the time of the interviews and could not be included. In one school the class contained a few more nuoils than could be interviewed in the week that could be devoted to this school. ':henever all of a class could not be interviewed those who were came in alohabetical or random order. In some of the schools these basic groups were supplemented by a few pupils chosen from other sections to be sure to include a few hich achievement pupils and to assure that about the same number of girls as boys were intervien:ed. The 176 pupils included 83 girls and 93 boys. Racially it included 90 blacks, 85 whites, and 1 oriental.

Three sets of data were taken (where available) from the
 included the year-end gracie in arithmetic assined by the schnol for the sixth grade (the year nreceding the interviews). Intelligence quotients based on group intelligence tests were available and were tabulatad in all but one school. The rade envivalent scorss on en arithmetic achicvement test were available in all the schools. These grade equivalents were tabulated for the comoutation part of these tests for all except one school where only concepts and p:oblen solving scores were on record. In this school the !:oblen solving score was tabulated.
. $:$ o claim is made that these 176 punils are representative of seventh graders enrolles in all nublic schools or even of seventh graders enrolled in the six schnol systems where interviews were held. This study was in no way a survey of the comntational skills of typical seventh graders. Instead it was the purnose to obtain some exariples of the thinkine used in computinn, hy nunils with a fairly wide range of backerounds--includin! boys and girls, blacks and whites, mathematical achievement, ability, type of school (rural and urban) and neographic location. That this was accomplished is indicated in the tables that follow.

The seventh rerade was chosen tecause by the end of the sixth grade all nupils will have been taught to compute with whole numbers and fractions at least once. llany of these seventh graders will likely be taught operations with whole numbers and fractions again, but it was thought that interviews at the seventh grade level would reveal patterns of thinking--computational strateries-as they have been formed at the end of the elementary school and before the reteaching expected in the remaining years of secondary school.

School !umber Ine - 25 Punils

School :!umber Two - 30 Pupils

Arithmetic Grades In Grade 6		Total 1.0. ${ }^{(1)}$	
Grades	Pupils	1.7.	Pupils
A	5	120-129	2
i	\%,	110-119	6
C	13	105-109	3
D	2	30-99	6
F	2	80-99	4
Total	30	70-79	3
		60-69	1
		Total	30

(1) Based or California Test of !!ental llaturity given in arade 7 (Fall, 1971)

Arithmetic Achievement
Computation-Trade Equivalent (2)
G.E.
9.0 and above 1
8.0-8.9 ;
7.0-7.5 1
6.0-6.9 3
5.0-5.9 13
4.0-4.9 5
3.0-3.9 4
M.A. 2

Total 30
(2) Based on S.R.A. Achievement Battery given in grade 6.

School : :umber Three - 30 Pupils

Arithmetic Grade In Grade 6		Total 1. ${ }^{(1)}$	
Grades	Pupils	$1 . ?$	Punils
A	4	120-12?	1
B	9	110-119	3
C	10	100-109	5
D	1	90-39	. 3
F	2	80-89	7
H.A.	4	70-79	3
Total	30	H.A.	8
		Total	30

(1) Based on California Test of !ental Maturity given in arade 5.

Arithmetic Achievement
Computation-Grade Equivalent (2)
G.E.
Punils
10.0 and above $\quad 1$
9.0-9.2 $\quad 1$
8.0-3.9 0
7.0-7.9 3
6.0-6.9 9
5.0-5.9 \quad
4.0-4.9 4
ii.A. 4

Total 30

$\text { School Number Four }{ }^{(1)}-30 \text { Pupils }$			
Arithmetic Grade in Grade 6		Arithmetic Achievement Computation.Grade Equivalent (2)	
Grades	Pupils	G.E.	Pupils
A	1	10.0 and above	1
B	6	9.0-9.9	0
C	17	8.0-8.9	0
0	6	7.0-7.9	3
Total	30	6.0-6.9	5
		5.0-5.9	3
		4.0-4.9	10
		3.0-j.9	1
		M.A.	2
		Total	30

(1) No intelligence tests are administered in this school.
(2) Based on Comprehensive Test of Basic Skills given at beginning of Grade 7.

School i!umber Five - 33 Pupils

$\left.\begin{array}{lcc}\begin{array}{c}\text { Arithmetic Grade } \\ \text { inGrade 6 }\end{array} & \begin{array}{c}\text { Total Intelligence Test } \\ \text { Score-Percentile Rank }\end{array} \\ \text { Grades } & \text { Pupils }\end{array}\right)$

School ilumber Six - 23 rupils

Arithmetic Grade in Grade 6		Total 1. ก̣. ${ }^{(1)}$	
Grades	Pupils	1.0.	Pupils
A	3	120-129	4
3	7	110-119	3
c	11	100-109	8
D	5	90-99	5
F	0	30-89	5
i. A.	2	il.A.	3
Total	28	Total	28

(1) Taken from the cumulative records of pupils at the school on which I.Q. derived from most recent test taken was recorded.

Arithmetic Achievement
Computation-Grade Equivalent
G.E.
Pupils
9.0-9.9 1
8.0-8.9 $\quad 1$
7.0-7.9 5
6.0-6.9 6
5.0-5.9 8
4.0-4.9 3
3.0-3.9 1
I.A. 3

Total 28
(2) Based on Hetropolitan Achievement Test given in Grade 6 .

Exercises Used in Interviews

There were 37 exercises used in the interviews distributed, by type, as follows.

Addition of whole numbers	-3 exercises
Subtraction of whole numbers	-3 exercises
iiultiplication of whole numbers	-3 exercises
Division of whole numbers	-4 exercises
Addition of fractions	-4 exercises
Subtraction of fractions	-5 exercises
ilultiplication of fractions	-3 exercises
Qivision of fractions	-4 exercises
Fraction comnarisons	-2 exercises

One of the exercises on division of whole numbers was added only for the last two schools where pupils were interviewed. This means that in four schools only 3 exercises in division of whole numbers were used. Also after interviews were completed in four schools, one exercise in subtraction of fractions was deleted and another substituted. This means that no more than 36 exercises were included for any one punil. These exercises were chosen to require a variety of computational skills and they were arranged in different ways-e.c. both vertically and horizontally. Again the intent was to stimulate pupil thinking over a rançe of computational exercises and arrangenents and to obtain records of examnles of this thinking.

The 37 exercises and the way they were arranged for the pupil may be seen on panes $16-18$ following.

Length of Intervievs

In general the interview with a single punil did not extend beyond one class neriod of about 4.5 to 55 minutes. Durinn the interview the pupil was allowed, for the most part, to take as much time as he wished on an exercise. Occasionally when it $\%$ as apparent that a pupil was hopelessly confused with an exercise, he would be moved to another to get examples of his thin!ing on as \because ide a variety of exercises as time permitted. Many nunils ran out of time before getting to the last 8 exercises with fractions that called for comparisons hased on concents rather than detailed computations. So not every exercise was tried by every puoil. The number of pudils who did not try each exercise and the number of right and wrong answers are all indicated on nages 16-13.

The principal investi?ator conducted all the interviews in the last four schools and most of those in the first two schools. In these first two schools, he los helned with a fer of the interviews by a research assistant thornughly familiar with the study.

Results

Frequency of Right and !/rong Answers and Omissions
The exercises are listed below and arranged just as they were on the sheets used by the nupils. The number of right answers, the number of wrong answers, the number of omissions, and the percent of attempted exercises with right answers are also included.

The "omit:" category must be understood to include those exercises :/hich were not at tempted because of limitation of time as well as those which pupils chose not to try because of not knowing how to do them. Something of a combination of these reasons accounted for other umissions. For examnle, when a dunil used an especially long and tedious strategy for a particular exercise, the interviewer directed him to skip sone of the remaining exercises in order to have him try some in each oroun representing the several onerations. Perhaps the most heloful statistic in the table that follows is the one which shows the percent of attempted answers that were correct ones.

	Right	"rong	Omit	Percent Attempted Exercises Uith Rinht Answers
Add				
$73+24=$	168	8	0	95
64				
79	163	7	0	95
703				
538				
291				
478	135	41	0	77
Subtract				
93-32 =	167	9	0	95
86				
49	144	32	0	. 2
703				
329	132	43	1	75

	Rinht	'roner	Onit	Fercent Atcenoted Exercises i!ith ?iaht Ans\%ers
Divide				
$153 / 4 \div 3 / 4=\ldots$	31	73	72	30
$63 / 10 \div 3=$	32	40	95	40
$7 / 3 \div 2 / 3=$	31	59	86	34
:'hich is larger?				
$2 / 3 \times 5$ or 1×5	Co	38	75	6.1
$3 / 2 \times 6$ or 1×6	72	19	$0 \cdot$	79
$17 \div 5 / 8$ or $17 \div 1$	46	34	36	59
$17 \div 5 / 2$ or $17 \div 1$	43	29	93	62.
$39 / 10+7 / 3$ or $39 / 10+1$	54	22	70	73
$85 / 6+7 / 4$ or $55 / 6+1$	63	37	76	63
101/9-7/8 or $151 / 5-1$	59	25	12	73
123/8-5/4 or $123 / 8-1$	50	35	85	62

There were no omissions for the three addition exercises with whole numbers and very few wrong answers for the first two. There were, halever, 41 wrong answers for the column addition of 4 three-digit addends.

There was only one omission for the three subtraction exercises with whole numbers. There were few (Э) wrong answers to the first exercise but considerably more (32 and 43) for the other two subtraction exercises.

There were 10 omissions for the chree multiplication exercises with whole numbers, and all three had a substantial number (47, 54, 62) of wrong answers.

Considering only the 3 division exercises with whole numbers that were used in all six schools, there were 52 omissions. All three exercises had a considerable number ($25,48,52$) of wrong answers.

It is significant that the number of wrong answers was greatest in division, the next in multiplication, the next in subtraction, and the least in addition.

The onissions increased (17-5s) with each exercise among the four addition exercises with fractions. A noticealle fact is the 84 wrong answers for the first of these addition exercises $3 / 4+1 / 2=$ \qquad .

Three of the subtraction exercises with fractions were used in all six schools. Another was used in the first four schonls and was replaced by $\% 2 / 3-57 / 8$ in the last two schools. Anain it is noticeable that 65 pupils got a wrone answer for the exercise $3 / 4-1 / 2=$ \qquad . The errors were also quite high (24) compared with the correct answers (20) in the two schools where the exercise 9 2/3-5 7/3 was used.

The substantially highest number of rioht answers among the multiplication exercises with fractions was for $2 / 3 \times 3 / 5$; yet there were 57 wrong answers for this exercise. The first of the division exercises with fractions had the larnest number (35) of wrong answers and the smallest number (32) of omissions. These were the responses to $9 / 10 \div 3 / 10=$ \qquad . There were only 31, 32, and 31 , respectively, right answers to the remainine three division exercises.

It is to be noticed that tine first exercise in each of the four operational groups with fractions had the fewest omissions, and that the number of omissions tended to increase with the remaining exercises in a group. This is explained in large nart by the practice of the interviewer to encourane punils to try the first exercise in each groun, at least, if it anpeared that time would not permit tryina all the exercises. This meant, of course, that the faster and usually better computers tended' to be the ones who tried the latter exercises in each groun..
 asked to respond by simply placing a check mark in orite of the two blank spaces. Pencil and paper comnutation ras discouraged although many pupils wanted to perform the operations in order to choose an answer thougint to be correct. Affer an ansiver was : checked for each exercise, the dupil was asked to say why he made the choice he did. This explanation was, of course, recorded and used in the analysis presented later in this reoort. The large numbers of omissions for these exercises resulted from the fact that they came at the end and many pupils did not get to them in the time available for the interview. This again means that this group of exercises were attempted by the faster and, usua!ly, better comnuters in higher ratio than was the case in the earliest exercises. The highest number (9.4) of right answers in this groun was in resnonse to the question, which is larner $33 / 10+7 / 8$ er $39 / 10+1$? Also this exercise had the smallest number of omissions among those in this groun. This nrobably reflerts the piaclire of the intelvicwer, follaved in the later
interviews of starting with this exercise, since nunils seemer to be able to interoret the comparisons based on addition better than those based on the other onerations. This exercisc, then, tended to give the nunil a better start with this oroun of exercises than did those based on multiplication and followed by division.

Strategies Frequently Used in Four Operations with :!hole ilumbers

It is one of the assumbtions of this study that computational strategies vary greatly anong pupils in the seventh grade. This assumption is abundantly sunported by the interviews, as will become clear in the remaininy nages of this report. For tilis reason it is extremely diffirult, or almost impossible, to place these strategies in categories mithout obscuring the individual variations. Despite this fact an atteript was made in the analysis of the interviews to single out a few strategies that were fairly uniform in nature and high in frequency. A presentation of these frequent strategies follows.

Counting was the most frequently used strategy in operations with whole numbers. There were 93 pupils win used counting in the addition of whole numbers; 63 in subtraction of whole numbers; 63 in multiplication of whole numbers and 4 in division of whole numbers. Some pupils (51) used counting to add any digit; others (37) used counting only in 'bridging', as in $18+6$. A few (5) used counting to add large digits only, such as 7,8 , or 9 . but did not need to count to add such digits as 1,2 , or 3 .
:Then pupils use counting in an operation, many of them have some means of 'keeping count" of the counting. 'then a nupil thinks, for example, $;+8=$? and says $10,11,12,13,14,15,16,17 .{ }^{\prime}$ he is likely to have sone means to tell him when to stop countinn. !lost pupils (4.5) use their fingers for this purnose. Others (14) make motions in the air with a nencil point. The motions are often made in pairs or in triples to help in keeping count. Sometimes (14) dots or marks are made on scratch paner. For example, in $8+7$ a pupil may make marks in nairs like this as he counts the 7 on to the $3:::$. Less frequently the marks assume no pattern. For $\mathcal{E}+7$ the pupil merely makes marks like this /////// as he counts 9, 10, 11, 12, 13, 14, 15. nther pupils do not reveal their scheme for 'keeping count' of their countinn. 'il count in my mind' is an explanation given. It is quite likely that some of these pupils do in fact use their fingers but are reluctant to reveal the practice. l!any times in the interviews this reluctance to reveal "counting on my fingers" was apparent. Somehow pupils had developed the attitude that if you "count on your fingers" you should keep it to yourself.

Of the 6.3 oupils who used counting in sultraction of uhole numbers, 25 used it with any diait, and 37 used it in hridging only," as in 16 - g. It is interesting that hap pupils counted from the subtrahend to the minuend to get a difference. For 3-3, for example, a nupil wouli say $4,5,6,7,8,9$, the
 counted. There were 17 pupils who counted hackwards from the minuend to the subtrahend. For exampie, for $13-8$ a nunil would say $13,12,11,10,9$, the answer is $5-$-aga! havino very likely accumulated the 5 on his fingers as he counted.

Surprisingly there were 63 pupils who used counting in the multiplication of whole numbers. Dften (31) countinc was used in deriving an untnom combination from a finown one. For example, a pupil who did not know the combination $7 \times 8=$? in some instances said " $7 \times 7=45,50,51,52,53,54,55,56 "-$-stopping with 50 when he had counted 7 fincers on to 49. In other cases the ounil started with $7 \times 5=35$ and counted over 7 fingers 3 times like this ' $36,37,33,39,40,41,42: 43,44,45,46,47,40,4!:$ $50,51,52,53,54,55,56 .{ }^{\prime}$ There were 31 nupils who continued to count when addition was necessary in multinlication. For example, in the product 53 a dunil might say ' 5 times? is 40 , put down your 0 and carry $\frac{75}{}$ the (writing it above the 5 of 5) , then $5 \times 5=25: 26,27,23,2$:. ' Counting 'vas also used in adding partial oroducts by 29 pupils.

A small number (4) of the punils intervietwed used counting to obtain a quotient figure. For example, in $27 / \overline{51}$ one punil wrote 81 marks on scratch paper, counted off three arouns of 27 marks cach and decided that ' 27 goes into 31 three times.' The next exercise vas $43 / \mathfrak{?} 3$. This same pupil extended the ? marks to 33 , counted off 43 , then ihe 45 left, and decided that $: 43$ noes into 33 one time with 45 ; left over." Punils continued to use counting as in addition and subtraction when these operations were needed in a division exercise.

Some strategies, other than counting, which were frequently used are next described. One of the three addition exercises with whole numbers was arranged like this: $73+2^{4}=$ \qquad . Sixty-five pupils first rewrote this exercise vertically. Thirteen of those who found the sum without re:uriting added the tens first. That is, $73+24$ became ' $7+2$ is ? and $3+4$ is 7.

Uith high frequency (74) pupils chose, or made, doubles to add. In $64+78$, for example, pupils would say " 8 and 4 are 12 ; 6 and 6 are 12 , olus 1 is 13 , olus 1 (carried) is lif. In colunn addition, where the digits in the one's column were $\eta+r+1+8$, pupils would say ${ }^{2}$ and ? are $16,+1$ is $17,+1$ is $18,+8$ is 26 or $\cdot 8+3$ is $16,+1$ is $17,+9$ is $26::$ Another strateny in
addition of whole numbers was to work for conbinations of ten, or multiples of ten. This was done by skipping about in a column to find two or more addends with a sum of 10 (50), or by subdividing addends to make sums of 10 , such as $7+5$ becoming $5+5+2$. Sometimes two strategies were used as in ? $+8+1+3$ which would become ${ }^{\prime} 3+1$ is $10,8+3$ is 16 ; and $10+16$ is 26." Other variations in column addition meant starting with the larger digits in the column (25 pupils), or in some other way fol.. lowing a sequence of addends that was not straight up or down the column \{102\}. Another interesting practice appeared in adding the column $9+3+1+3$ which became $17+1=18$ and $15+3=$? In 73 cases this was written on scratch paper aside as 18 and the pupil said " 3 and 8 is 16,1 and 1 is 2 , the answer is $\overline{26 . " . ~ I n ~}$ 33 other cases this was done mentally, without writing the addends separately. In 55 cases pupils added the carried digit in some order other than first or last. That is, this carried digit was worked into the sum whenever the pupil found it most convenient in his thinking.

In the subtraction of whole numbers there was one exercise arranged like this, 93-32 = \qquad - There were R2 punils who first rewrote this exercise vertically before subtracting. In recent years most pupils have been taught that subtraction is the inverse of addition. That is, $13-8=$? really asks the question $8+?=13$. So when a pupil must subtract 86 he should think 49
'? and 7 is 16 ; 4 and 3 is 7." Only 27 pupils interviewed showed this pattern of thinking. A much larger number (123) of nupils regrouped quite mechanically. For example, a pupil in the exercise: Subtract $\Omega 6$ would say "mark out the 8 , make it a 7: make 49
the 6 a 16 " or "take one from 8 , add it to the $6 . . "$ Usually the rewritten exercise would look like this. 7\% ${ }^{1} 6$ There were
39 pupils who thought of regrouping for subtraction as borrowing. Seventy of these showed the borrowing by rewriting the exercise, while 19 kept the borrowing "in mind." Only 4 pupils thought of the regrouping as changing a hundred to tens and a ten to ones as in subtract 708. These pupils would say something like this $1: 7$ 329
hundred become 6 hundred, 0 tens becomes in tens: then 10 tens become 9 tens and 3 ones become 18 ones."

A surprising use of quite puzzling vocabulary anpeared in the subtraction exercises. Here are some exanples in the exer. cise: subtract 86 ' 6 can't 90 into 9 : 6 subtract from 9 will be 49
3. 'You can't take 6 froln 9 so you borrow 1.:

Some examples in the exercise: subtract 703 are: 329
'9 subtract 8. leaves 1';
'9 won't go into 3: 2 won't go into 0: 3 noes into 7, four times, answer 400."
'9 from 8 are 1 ; you can't take 2 out of 0 so borrow 1 from 7.'
1.9 minus $8=1$ and 0 can't go into 2 , so 1 borrow 1."

There were 69 pupils who used such "confused vocabulary" in the subtraction exercises.

The first multiplication exercise wäs arranged this way: $15 \times 20=$ \qquad . There were 148 punils who first rewrote the exercise vertically, some placing the 19 on top, others placing the 20 on top. The partial products were derived and written in many different ways. ilere are some examples of the written work.

20.	19	20	19	19	19	19	19	19
$\frac{19}{180}$	$-\frac{20}{00}$	$\frac{19}{180}$	$-\frac{20}{00}$	$-\frac{20}{3800}$	$\frac{20}{19}$	$\frac{20}{213}$	$-\frac{20}{00}$	$\frac{20}{20}$
$20 \cdot$	38	$\frac{200}{380}$	$\frac{380}{380}$		$\frac{28}{299}$	$\frac{00}{218}$	$\frac{213}{2180}$	

Other examples appear in the later analysis of wrong answers.
There were only 7 pupils who, withnut rewriting the factors, wrote the product 380 , thinking simply ' $2 \times 19=38$ and add $0 .{ }^{\prime \prime}$

A strategy used in finding the product 58 has been illus75 trated in earlier notes on addition strategies. It involved deriving an unknown combination from a known one. Usually this strategy was used with the product 7×8. A punil would say $\because 8 \times 5=40,+8$ is $48,+8$ is 56 ,"or he would say $1.7 \times 7=49$; $+7=56 .{ }^{\prime \prime}$ There were 45 pupils who relied on this strategy in this particular exercise.

In the exercise: multiply 304 there were 101 pupils who 506
arranged the partial products this way 1324. Thirty-six 000
1520
others used a variety of other forms illustrated as follows.

1824	1824	1824	1824	1824
152000	0000	15200	0000	1520
1824	15240000		1824	1520000
0000		0000		
152000		15200		

In the division exercises there was little evidence in the vocabulary used by the purils of thinking of division as the inverse of multiplication. For examole, in the cxercise 27/81 there was very little thinking in the pattern $27 \times ?=81$. :luch more frequently the thinking was expressed in such words as: '27 divided by 81"; "27 goes into 81": "llow many 27's in 81"; "put 27 into 01 "; "27 into 81 "; there were 155 pupils who used such a pattern of thinking in the division exercises.

To find a digit in the quotient 29 pupils added the 27 divisor aside. Thus for the exercise $27 / \overline{1} 1$ a pupil might 27 add like this, or he would estimate the quotient to be $4 \quad 54$ and check by adding a column of four 27's.

A quotient digit was more often (79) chosen quite arbitrarily-usually too small-and checked by multiplication, aside. If the first product did not seem suitable, another digit was tried and another product derived. In the exercise 74/6434, for examnle, the divisor might be multiplied sedarately by $3,4,5,6,7,8$, and 9 before deciding that the first quotient digit should be $\%$. There were $2 ?$ pupils who chose a quotient digit and checked by repeated multiplication, aside. There were 123 puoils whn, with at least one of the division exercises, estimated the quotient digit in some fashion and then tested their estimate by multiplication, aside. As will be seen in the reporting of wrong answers later, these estimates were made in a variety of ways.

Strategies Frequently Used in Fcur Operations

 with FractionsAmong the four exercises in addition of fractions, all were arranged horizontally like this: $3 / 4+5 / 2=$ \qquad , $3 / 8+7 / 8=$
, $57 / 3+21 / 2=$ \qquad , $2 / 3+1 / 2=$ \qquad - There were 90 pupils who first rewrote one $\overline{o r}$ more of these $\overline{\text { vertically before attempt- }}$ ing to find a sum. In the case of $57 / 8+21 / 2$, there were 98 who added the whole numbers and fractions separately while 17 first changed the mixed numbers to improper fractions and then wrote with common denominators. As would be expected, most of the pupils (97) who tried the addition of fractions, first rewrote them as equivalent fractions with common denominators; 20 of these kept the horizontal form of the exercise. The incorrect practice of adding numerators for the numerator of the sum and the same with denominators was used by 62 pupils. A smaller number (10) added numerators and placed the sum over the larger denominator of the fraction addends, as in $3 / 4+5 / 2=$ 8/4, and ó pupils added numerators but multiplied denominators as in $3 / 4+5 / 2=8 / 8$.

The subtraction exercises with fractions numbered five. Three were arranged horizontally like this: $3 / 4-1 / 2=$ \qquad $5 / 3-1 / 3=$ \qquad , $71 / 2-41 / 4=$ \qquad . The last of these was used in only four schools. The other two subtraction exercises were arranged vertically like this: $82 / 5$, $92 / 3$. The latter $43 / 10$ 5713 was used in only two schools. Again many runils (94) first rewrote the horizontal exercises vertically. The whole numbers and fractions of mixed numbers were subtracted separately by 120 pupils while 4 first changed to improper fractions. There were 98 who converted to equivalent fractions with common denominators before subtracting. The incorrect practice of subtracting numerators for the numerator of the difference and the same for denominators, as in $5 / 8-1 / 3=4 / 5$, was used by 49 pupils. The exercise $92 / 3-57 / 8$ was usually rewritten as $916 / 24-521 / 21 /=$, then pupils "borrowed 1 from 9 " and 38 of them correctly rewrote the 1 as $24 / 24$ and added to $16 / 24$ for $40 / 24$, but 12 punils 'added the 1 to 16 " by making it 26 for $26 / 24$.

All three of the multiplication exercises with fractions were arranged horizontally like this: $2 / 3 \times 3 / 5=$ \qquad $21 / 2 \times 6=$ \qquad , $51 / 2 \times 3 / 4=$ \qquad - There were 85 punils who correctly multiplied numerators for the numerator of the product and the same for the denominators; two pupils first wrote equivalent fractions as in $2 / 3 \times 3 / 5=10 / 15 \times 9 / 15=90 / 225$. Hixed numbers were rewritten as improner fractions first, as in $21 / 2 \times 6=5 / 2 \times 6 / 1$, by 38 pupils. In this same exercise, however, 29 pupils multiplied the whole numbers and simply affixed the fraction for a product, as in $21 / 2 \times 6=121 / 2$, and 7 pupils found the product this way $21 / 2 \times 6=(2 \times 6)+(1 / 2 \times 6)=$ $12+3=15$.

In the product of a mixed number by a fraction, 32 punils rewrote the mixed number as an improper fraction first as in $51 / 2 \times 3 / 4=11 / 2 \times 3 / 4=33 / 3$, while 30 puoils incorrectly multiplied the fractions and affixed the whole number for a product, as in $51 / 2 \times 3 / 4=53 / \%$. Another incorrect practice of writing equivalent fractions with a common denominator and then multiplying the numerators written over the common denominator for a product, as in $2 / 3 \times 3 / 5=10 / 15 \times 9 / 15=$ 90/15, was used by 31 pupils. Interestingly there were 5 nunils who wrote the reciprocal of the second factor and multiplied the resulting fractions as in $2 / 3 \times 3 / 5=2 / 3 \times 5 / 3=10 / \mathrm{n}$.

The four division exercises were all written horizontally, like this: $9 / 10 \div 3 / 10=$ \qquad , $153 / 4 \div 3 / 4=$ \qquad , $69 / 10 \div 3=$, $7 / 3 \div 2 / 3=$. There were 36 pupils who correctly wrote the reciprocal of the divisor and multiplied as in $7 / 8 \div 2 / 3=7 / 8$ $\times 3 / 2=21 / 16$, and there were 5 pupils who multiplied numerators
and denominators without first writing the reciprocal of the divisor, as in $7 / 8 \div 2 / 3=14 / 24$. The most frequent (69 pupils) incorrect practice was to dividt numerators and place the quotient over the common denominator, as in $9 / 10 \div 3 / 10=3 / 10$. There were 46 pupils who wrote mixed numbers as improper fractions before dividing, as in $153 / 4 \div 3 / 4=$ \qquad , $63 / 4 \div 3 / 4=$ \qquad and 36 pupils who wrote equivalent fractions with a common denoninator and divided numerators, as in $7 / 8 \div 2 / 3=21 / 24 \div 16 / 24=15 / 16$. liany, who followed this practice, made the final division incorrectly and wrote a quotient of $15 / 24$. In dividing a mixed number by a fraction, 46 pupils incorrectly divided the fractions and affixed the whole number for the answer, as in $153 / 4 \div 3 / 4=$ $151 / 1=16$. In dividing a mixed number by a whole number 26 pupils divided the whole numbers and affixed the fraction, as in $69 / 10 \div 3=63 / 10$, while 3 pupils correctly divided the whole number and then the fraction, separately, by the whole number, as in $69 / 10 \div 3=2+3 / 10=23 / 10$.

If a pupil followed the rather conventional strategies described here, he might have "cancelled" as indicated.

Only 33 pupils used such cancellation strategy and 30 of these were in two schools. It must be remembered that many pupils did the multiplication and division exercises incorrectly and, therefore, never urote them in a form wliere cancellation was useful. Even among the successful pupils, such practices as the following were followed.

$$
\begin{aligned}
& 2 / 3 \times 3 / 5=6 / 15=2 / 5 \\
& 153 / 4 \div 3 / 4=(15 \times 4 / 3)+(3 / 4 \times 4 / 3)=60 / 3+12 / 12= \\
& \quad 240 / 12+12 / 12=252 / 12=21 \\
& 21 / 2 \times 6=5 / 2 \times 6 / 1=30 / 2 \\
& 69 / 10 \div 3=69 / 10 \cdot 1 / 3=69 / 30 \\
& 153 / 4 \div 3 / 4=63 / 4 \times 4 / 3=252 / 12
\end{aligned}
$$

Wature of Wrong. Answers--Whole liumbers

There were 2173 possible answers to the 13 eyercises with whole numbers by the $17 C$ pupils interviewed (one exercise was used in only 2 schools with 61 punils). Of these possible answers 1658 (76%) were right; $449(21 \%$) were wrong: and 6.6 (3%) were omitted. Each wrong answer and a detailed account of how it was derived appears in Appendix A. It is hoped that the reader will read many of the explanations of how these wrong answers were derived for then it will become apparent how widely they vary-.. both numerically and in method of derivation. This variation again makes it clear how imnossible it is to classify these methods of derivation into categories without destroying the idiosyncracies. Wevertheless the following neneral observations are offered with the hope that the reader will form his own list.

Addition

1. Many combinations were recalled incorsectly in addition, as in ${ }^{1} 9+8=18,+1=19$ and 8 is $27, \because$ or $" 7 \times 8=63$, ${ }^{\prime \prime}$ or " $8 \times 5=35, "$ or $1: 7 \times 8=43 . "$ The same was true in each of the other operations.
2. :Then counting was used pupils of ten lost count of the counting as in counting 9 on to 17 in $17+9$ and getting 25,
 51, 52, 53, 54, 55, 57, 57'1).
3. Hany pupils failed to add the carried digit even when it was written above the top digit in the column to the left.
4. Sometimes the wrong digit was carried from the sum of one column to the next as in ${ }^{\prime} 2+3=5,+9=14,+7=21$, put down the 2 and carry $1 .{ }^{\prime \prime}$
5. Intending to add, a pupil may have, in fact, muitipiied as in $17+2$ is 14 , +5 is $19,+2$ is $21,+4$ is 25.1 .

Subtraction

G. Some pupils intended to subtract but in fact divided as in 93-32, "'2 from 3 is 1 ; 3 from ? is 3.!'
7. A wrong order was often used in subtraction as in $86-49$, a pupil would say ' 9 minus 6 is $3 ; 8-4$ is 4 " or '? from 6 leaves 3 and 4 from 8 leaves $4^{\prime \prime}$ or in 703-32.9 a pupil said ' 2 from 8 is 1 : 2 from 0 is $0 ; 7$ from 3 is 4.'
8. A pupil would think to borrow to increase a digit but not reduce the digit from which borrowed, as in 86 - In $16-9=7$ (counting) ; $8-4=4$.
9. !'hen borrowing, as in 703-329, a pupil might borrow twice, once to make 0 a 10 , and again to make δ an lis, leaving the 7 as 5.
10. Some pupils borrowed from the tens column only, when they should have borrowed from both tens and hundreds columns, as in 708-329, rewrote 703 as 7-9-18, then ${ }^{11} 19$ from 9 is 9: 3 from 2 is 7 ; 7 from 4 is 3."
11. Other pupils borrowed from the hundreds column only and rewrote the tens digit incorrectly. As in 70? - 329; rewritten as 6-10-13. Then $18-9=9 ; 10-2=8 ; 6-3=3$.
12. The minuend was rewritten simply by affixing ones where needed, as in 703 - 329 which became 7-10-18 for 708 and the answer was $18-9=9: 10-2=3 ; 7-3=4$.
llultiplication
13. The ones digit was multiplied by the ones digit and the tens digit by the tens digit only, as in $19 \times 20=$ \qquad , rewritten as 19, then " $0 \times 9=0$ and $2 \times 1=2$ " answer 20: or 58 $\frac{20}{x} 8=40 ; 7 \times 5=35,+4=39$. Written as a single product 390.
14. The carried number was not included in the partial product, as in $19 \times 20=$ \qquad , rewritten as 19 , then " $0 \times 9=0$;
$0 \times 1=0 ; 2 \times 9=18: 2 \times 1=21^{1-2}$

Throughout the remaining pages of this report a blank space or blank spaces after a numeral indicates an indentation in the arrangement of a partial product. For example, partial products 1824, 000, and 1520-were arranged by the pupil this way 1824 or partial products $1824,000-$, $1520--$ were 000

$$
1520
$$

$$
17024
$$

arranged this way. 1824
15. Place value of partial products was confused as in 19
$10 \times 9=0: 0 \times 1=0.2 \times 9=18: \quad 20$
$2 \times 1=2,+1=3$: $\quad 3800$
Or in 304 " $6 \times 304=1024: 0 \times 304=000.5 \times 304=1520-$ 506
for sumil7024.
16. The wrons product was written when one factor was 0 , as in $13 \times 20=\ldots ; 0 \times 1=9 ; 0 \times 1=1 ; 2 \times 9=18: 2 \times 1=2$, $+1=3.1$ Punil wrote 3 r- under 19 for sum of 30 .
17. A multiplication fact was recalled incorrectly as $7 \times 8=54$, in 50×75 " $8 \times 5=40 ; 5 \times 5=25,+4=29 ; 7 \times 3=54$: $7 \times 5=35,+4=40 .:$ Then $290+404 \cdot=4330$.
18. One of the digits in the multiplier was not used in finding the product, as in 304; only two partial nroducts $6 \times 304=$ $\times 506$
$1824 ; 5 \times 304=1520-$ Sum 17024.
19. Partial products were found correctly but errors were made in adding them, as in $535 \times 50=290: 7 \times 58=406$ - for sum $\times 75$ 4350 , said " $9+6=16$ in adding partial preducts.

Division
20. A remainder was interpreted wrongly as in $27 / \overline{31} ; 9,27=3$; 3×2 ? $=81 ; 81-31=0$; ' 27 won't go into 0 , so answer is 30^{\prime}; or in $48 / 93 \div 48$ goes into 93 one time; $1 \times 43=48$; 93-48 = 45; 48 can't go into 45; put 0 up; $45-0=45^{\prime}$ for answer 10845.
21. 'Long division' was confused with "short division' as in 27/31; " 2 goes into 3 four times: $2 \times 4=8$. Then $81-8-=$ 01: 2 won't go into 1 so answer is 4 RI . Or in $48 / 9{ }^{\prime}{ }^{\prime \prime} 4$ goes into 9 two times: $4 \times 2=8: 9-8=1$; bring down 3 ; 3 gocs into 13 one time; $3 \times 1=8$; $13-8=5^{\prime \prime}$ answer 2185 .
22. Quotient digit was multiplied by the divisor incorrectly, as in 74/6484: "i $\times 74=572^{\prime \prime}(8 \times 4=32: 8 \times 7=54,+3=57)$.
23. Errors were made in repeated multiplications to find quotient diqit, as in $74 / 6434$ decided 74 goes into 648 seven times. then $7 \times 74=658$ (thounht $7 \times 4=28$ and $7 \times 7=56,+7=$ 63).
24. Derived an answer before oneration was complete, as in $74 / 6484,174$ goes into 648 , eight times: $643-592=56$,' so answer is 8 R5G.
25. Ly repeated multiplication tried incorrectly to derive entire quotient instead nf one digit at a time, as in 74/6494, multiplied 74 by 12 , by 24 , by 52 and by 61 . Cliose 52 for quotient 'because 3348 is closest to $64: 4$ ': then 545.4 $3248=2636$. Placed 2734 (incorrect product of 74×61) under 2636. Then $2636-2734=102$. Answer 5261 R102.
26. Place value was handled incorrectly in the quotient, as in 15/7590; " 15 goes into 75 five times 75-75=0; bring down your 9; 15 won't go into 9 so bring down $0 ; 6 \times 15=90^{\prime \prime}$ so answer is 56. Or 15 into 75 five times: $75-75=0$ " 15 won't go into 0 so bring down ?; 15 won't go into 9 so bring down 0 ; 15 into 90 noes 6 times: $90-90=0 ; 15$ into 0 zero times so answer is 560.
ilature of !!rong Anstvers--Fractions
There were 2640 possible answers to the 16 exercises in computation with fractions by the 176 pupils intervieryed. (nne exercise was used in only four schools with 115 pupils and another in only two schools with 61 nupils.) Df these possible answers, 924 (35\%) were right; 865 (33\%) were wrong: and 851 (32\%) were omitted. Each of the wrong answers and a detailed account of how it was derived appears in Appendix B. First it should be observed that the performance with fractions was much belov that with whole numbers. There was a lower percent of right answers, a higher percent of wrong answers and a higher percent of omissions. The higher percent of omissions is explained, in part, by time limitations which meant that some of the later exercises in the total set could not.oie completed in the time devoted to an interview.

Agairs the reader will observe great variations in the answers; and tleir derivations, for the fraction exercises. There were, chowever, ;many more common wrone answers, and like derivations, for factions than for whole numbers. Some observations are offered below regarding the wrong answers and their derivations with the fraction exercises. Again the reader is urged to examine carefully Appendix B to get a clearer idea of the nature and derivation of these answers.

Addition

1. A prevalent practice was to add numerators and place the sum over one of the denominators or over a conimon denominator, as in $3 / 4+5 / 2=8 / 4 \quad 15+3=3$. You don't add the bottom numbers because 2 will go into 4 ."
2. The most prevalent practice in adding fractions was to add numerators for the numerator of the sum and the same for the denominators, as in $3 / 4+5 / 2=8 / 6$ or $3 / 8+7 / 8=10 / 16$.
3. :fany errors were made as pupils undertook to write equivalent fractions with conmon denominators, as in $3 / 4+5 / 2=$ chose 4 as C.D. Then, for $3 / 4$, " 4 times 1 equals 4 and $1+3$ is $4, "$ so $4 / 4$: for $5 / 2$ " $2 \times 2=4$ and $4 \times 5=20$ ': so 20/4; or $8 / 8$ for $7 / 8$ (88 into 8 one time and $1+7=8$). The same thing was done in the other operations.
4. Several relatively large whole number answers were a surprise, as in $3 / 4+5 / 2=36(5+3=8 ; 4+2=6)$ or $3 / 4+5 / 2=59$ (14 and 5 is $9 \cdot 3$ and 2 is $5:$), or $3 / 8+7 / 8=$ 26 (י'7 over 3 is $15: 3$ over 8 is $11 ; 15+11=26^{11}$).
5. The numerator and denominator of one fraction were added for the numerator of the sum, and the same with the second fraction for the denominator of the sum, as in $3 / 8+7 / 8=$ $11 / 15$ (' 8 and 3 is $11 ; 7$ and 8 is $15^{\prime \prime}$), or $3 / 4+5 / 2=7 / 7$ (' 3 + $4=7 ; 2+5=7$ ' $)$, or $2 / 3+1 / 2=5 / 3(12+3=5$; $2+1=3^{\prime \prime}$)

Subtraction
6. As in addition, a very prevalent practice was to subtract numerators for the numerator of the difference and the same with denominators; as in $3 / 4-1 / 2=2 / 2(3-1=2$; $4-2=2)$; or $82 / 5-43 / 10=41 / 5(8-4=4: 3-2=1$; 5 from 10 is 5), or $71 / 2-41 / 4=30 / 2(7-4=3$; $1-1=0 ; 2$ from $4=2$), or $5 / 8-1 / 3=4 / 5$ (1 from 5 is 4; 3 from 8 is 5).
7. In writing equivalent fractions, some pupils divided a denominator into the C.D. and added this quotient to the numerator of the original fraction for the numerator of the equivalent fraction, as in $3 / 4=4 / 4$ (4 noes into 4 one time; $3+1=4$). Others subtracted for the new numerator, as in $5 / 8=2 / 24$ ('3 goes into 24, three times, 3 take away 5 is 2^{11}).
8. As in addition, some surprising whole numbers were derived for answers, as in $3 / 4-1 / 2=22$ (" 2 take away 4 is 2 ; 1 take away 3 is $2^{\prime \prime}$), or $82 / 5-43 / 10=394$ (" 2 over 5 would leave 3 ; 3 over 10 would leave $9 ; 4$ from 8 would leave 4^{\prime}), or $71 / 2-41 / 4=133$ ($1 / 1$ over 2 leave 1 ; 1 over 4 would be 3; 7 from 4 would leave $3^{\prime \prime}$).
9. There were cases of the wrong use of borroving, as in 32/5$43 / 10=39 / 5$ (borroved 1 from 8; made it a 7; changed 2 of $2 / 5$ into 12 ; then $712 / 5-43 / 10=39 / 5$), or $3 / 2 / 5-$ $43 / 10=31 / 10$ (wrote $4 / 10$ for $2 / 5$ and $4 / 10$ for $3 / 10$; 'you can't subtract 4 from 4, so you borrow 1 from 4 [remainder from 8-4] make it a 3." Made first $4 / 10$ into $5 / 10$, then $5 / 10-4 / 10=1 / 10$.
10. A frequent error in writing equivalent fractions was to choose a C.D.; use it for the denominator of the new fraction but retain the numerator of the old fraction; as in $5 / 3=$ $5 / 24$ and $1 / 3=1 / 24$.
11. The borrowed number was used incorrectly as in 9 2/3 5 7/8 rewritten as $916 / 24-521 / 24$. Then ? 26/? $4^{-5} 21 / 24$.

ilultiplication

12. Many pupils first wrote equivalent fractions, unnecessarily, and then incorrectly multiplied numerators and nlaced the product over the C.D., as in $2 / 3 \times 3 / 5=10 / 15 \times 9 / 15=$ $90 / 15$, or $2 / 3=7 / 15$ ('3 goes into 15 five times; $5+2=7$ ') and $3 / 5=6 / 15$ (155 goes into 15 three times; $3+3=61$). Then $7 / 15 \times 6 / 15=46 / 15$ because $6 \times 7=46$, or $21 / 2 \times 6=$ $5 / 2 \times 12 / 2=60 / 2$.
13. Here, as in addition and subtraction, surprisingly large whole numbers were derived as products, as in $2 / 3 \times 3 / 5=$ 100 (' $2 \times 5=10$, put down 0 and carry $1 ; 3 \times 3=9,+1=$ 10. Answer $100^{\prime \prime}$), or $21 / 2 \times 6=120$ (wrote vertically with 6 below $21 / 2$. Then : 0 times $1 / 2=0$; there is nothing under $1 / 2$ so multiply by $0 ; 6 \times 2=12$, answer $120^{\prime \prime}$), or $2 / 3 \times 3 / 5=615\left(112 \times 3=6 ; 3 \times 5=15^{11}\right)$.
14. In all the operations there were examples of correctly derived answers with errors introduced with conversions to silipler form, as in $21 / 2 \times 6=5 / 2 \times 6 / 1=30 / 2=15 / 2$ ('' 2 goes into 30 fifteen times, and the denominator is 2^{11}), or $2 / 3 \times 3 / 5=2 / 3$ (" $2 / 3 \times 3 / 5=6 / 15$, to reduce divide by $3 / 3$; 6 goes into 3 two times; 15 gees into 3 three times, so that'll be $2 / 3^{\prime \prime}$).
15. Some pupils wrote the reciprocal of the second factor before multiplying, as in $2 / 3 \times 3 / 5=2 / 3 \times 5 / 3=10 / 9$, or $21 / 2 \times$ $G=5 / 2 \times 1 / 6=5 i 12$.
16. In a mixed number times a fraction the fractions would be multiplied and the whole number affixed, as in $51 / 2 \times 3 / 4=$ $53 / 8$ ("1 $\times 3=3 ; 2 \times 4=8$; brin@ over 5 "), or in $51 / 2 \times$ $3 / 4=53 / 2 ; 51 / 2=52 / 4$ and $52 / 4 \times 3 / 4=56 / 4=53 / 2$.
17. In a mixed number times a whole number the whole numbers would be multiplied and the fraction affixed, as in $21 / 2 \times$ $6=121 / 2\left(146 \times 2=12\right.$, bring over $\left.1 / 2^{\prime \prime}\right)$.

Division

18. As in multiplication a widely used practice was to divide numerators and place the nroduct over the C.D., as in $9 / 10 \div$ $3 / 10=3 / 10$, or even in $7 / 8 \div 2 / 3=3 / 2$ ('12 gocs into 7 three times; 3 goes into 8 two times'), or $153 / 4 \div 3 / 4=$ $63 / 4 \div 3 / 4=21 / 4$.
19. After writing equivalent fractions errors were made in dividing numerators, as in $7 / 6 \div 2 / 3=21 / 24 \div 16 / 24=$ $15 / 24$, or $21 / 24 \div 16 / 24=1$ R5.
20. In dividing a mixed number by a whole number the whole number was divided by the whole number and the fraction was affixed, as in $69 / 10 \div 3=29 / 10$.
21. In dividing a mixed number by a fraction, the fractions vere divided and the whole number affixed, as in $153 / 4 \div 3 / 4=$ $151 / 4\left(1: 3 \div 3=1\right.$, bring over 15 , the answer is $\left.151 / 4^{\prime \prime}\right)$, or $153 / 4 \div 3 / 4=16$ (" $3 / 4 \div 3 / 4=1$, bring over 15 and $15+1=16^{11}$.
22. Humerators of like fractions were multiplied instead of divided, as in $9 / 10 \div 3 / 10=27 / 10$ ('the denominator would be 10; $3 \times 9=27$, and 27 Hould be numerator'1), or in $153 / 4 \div 3 / 4=159 / 4$ ("bring over 15; $3 \times 3=9$; bring over $4^{\prime \prime}$).
23. Numerators and denominators were multiplied without writing a reciprocal of the divisor, as in $62 / 10 \div 3=69 / 10 \times 3 / 1=$ 207/10.

Reasons Given for Urong Answers to Comparison
Exercises with Fractions
There were 140Ω possible answers to the eight comparison exercises with fractions. Of these, $498(35 \%)$ were right answers; 239 (17\%) were wrong answers; and 671 ($4 \% \%$) were onitted. Here, as in the other fractions exercises, the large number of omissions resulted, for the most part, from the limitation of time which meant that some pupils did not get to try the final exercises during the time devoted to the interviews. It may be more significant to note that of the 737 answers to exercises attempted 68\% were right and 32% were wrong. lloreover, it is true that many right answers were chosen for wrong reasons or because the wrong reasons happened to produce a correct choice in one instance and a wrong response in another. An example of this may be seen in the following pupil's choices and reasons.
l/hich is larger?

Another example is another pupil's correct choice for a faulty reason.

Still another example appears in this pupll's two responses.
l/hich is larger \qquad $17 \div 5 / 3$ or $17 \div 1$$?$
" $17 \div 5 / 8$, you come out with a mixed number" $!$ Ihich is larger $\downarrow \quad 17 \div 5 / 2$ or $\quad 17 \div 1$?
" $17 \div 5 / 2$, you come out with a mi $\overline{x e d}$ number."
There were really two comparisons necessary in these exercises. First the pupil needed to decide whether the fraction was larger or smaller than 1 . Then he must decide the effect on the operation of the relative value of the fraction and 1 . For example in the exercise: which is larger $17 \div 5 / 8$ or
$17 \div 1$?, a correct choice could involve the decision first that $5 / 8$ is less than 1 and then the decision that dividing a constant by a smaller number produces a larger quotient. Among the wrons answers, some pupils made the first of these decisions incorrectly; others made the wrong second decision; still others made both decisions wrongly. Some examples of these and other reasons for wrong answers follow.

1. The fraction and the 1 were incorrectly compared. For example a pupil may decide that all fractions--proper and improper--are less than 1 , or that they are all greater than 1 , as in the pupil responses above, or $123 / 8$ - $5 / 4$ is greater than $123 / 8-1$. $15 / 4$ is less than 1 ; if you subtract less than 1 , you get more than if you subtract more than $1 .{ }^{\prime \prime}$
2. Whichever divisor was thought to be larger, this made the corresponding sum, difference, product, or quotient larger. Far example this pupil had these tivo incorrect responses.
$17 \div 1$ is larger than $17 \div 5 / 8$ $17 \div 5 / 2$ is larger than $17 \div 1$ Another pupil said $101 / 9-1$ is larner because "l is a whole and $7 / \mathrm{C}$ is not a whole" or $101 / 9-1$ is larger than $101 / 3-7 / 8$. $1101 / 9$ is on both sides: change 1 to a fraction of $8 / 8$. Then $\mathcal{S} / 8$ is greater than 7/0."
3. Nany pupils attempted to perform the operations before making the comparison. Often these were carried only far enough to enable the pupil to make a choice. Often these operations were incorrect and led to incorrect choices. The interviewer tried to discourane this method of answering the questions, but many pupils scemed to understand nothing else and persisted. llere is an example.
$17 \div 1$ is larger than $17 \div 5 / 8$ because $175 \times 17=85 ; 85 \div 8=$? ; 8 into 8 goes 1 time; 8 into 5 goes no times;" hence 10 is less than 17.
Or this example:
$2 / 3 \times 5$ is larger than 1×5. "Cause 1×5 is 5 , and 3×5 is 15 and if 1 make it out a fraction it will be 2×15 which is greater than 5."
Or, $17 \div 1$ is larger than $17 \div 5 / 8{ }^{17} 17 \div 1=17: 17 \div 5 / 8$ goes $32 / 8^{\prime \prime}$
Or, $2 / 3 \times 5$ is larger than 1×5. " $1 \times 5=5$; $2 / 3 \times 5=52 / 3$, which is larger than 5.:
4. Some pupils who performed the operations-correctly or incorrectly-compared the sums, differences, products or quotients incorrectly, as in $85 / 6+1$ is greater than $85 / 6+7 / 4$. $1185 / 6+1=95 / 6$ and $85 / 6+7 / 4$ would only be 0 12/6.11
Or in 1×6 is greater than $3 / 2 \times 6$. " 1×6 is 6 and $3 / 2 \times 6$ would be $18 / 2$; then $18 / 2$ is less than 6.1 Or in this unusual one, $17 \div 1$ is greater than $17 \div 5 / 8$ "you have to take 5 into 17 and 8 into 17 , and you only take that (17 $\div 1) 1$ time.:
Or in $39 / 10+7 / 8$ is larger than $39 / 10+1$ '3 $9 / 10+7 / 8=$ $316 / 13$ and $39 / 10+1=49 / 10$; then $316 / 18$ is larger than $49 / 10.1$
5. A common error was to think of all whole numbers as greater than fractions, as in $85 / 6+1$ is greater than $35 / 6+7 / 4$ "I is a whole number and $7 / 4$ is a fractional number." Or in $101 / 9$ - 1 is greater than $101 / 9-7 / 8$ "this is a whole and that's just $7 / 8^{\prime \prime}$ or 'lis a whole and $7 / 8$ is half of a whole."

Some Characteristics of Cood and Poor Computers

One of the assumptions of this study was that "there are observable differences in the patterns of thinking--comnutational strategies of successful computers and unsuccessful computers." To help in testing this assumption a selection was first made of 12 pupils from among the 176 interviewed. Six of these composed a "good computer" group--one from each of the six schools. The pupil chosen from each school was the one who did most, or all, the exercises and had the largest number of correct answers. The remaining six pupils composed the "poor computer" group-one from each of the six schools. Again the pupil chosen from each school was one who had tried most, or all, the exercises and who had the largest number of incorrect answers. These were not the poorest computers in their several schools for most of the very noor computers were not able to complete most of the exercises. Uerbatim transcriptions of the interviews with these 12 pupils were made and carefully examined to detect features in the computational practices of the two groups.

Two lists of features were thus prepared. Then tapes of interviews with other good and poor computers were heard aqain. This time they were heard particularly for the purpose of detecting contrasts in the computational practices of good and poor computers. The lists which were developed in this fashion follow.
A. Good Computers

1. Good computers know the basic combinations and do not need to derive them by primitive methods such as counting.
2. Good computers tend to follow conventional algorithms rather consistently. They remember what they have been taught to do and follow the orthodoxy of classroom and textbook quite closely. For example, in column addition they are more likely, than are poor computers, to add the digits in order from top to bottom, or bot tom to top, rather than to jump about to find preferred combinations such as doubles or sums of ten. A sentence arranced horizontally such as $3 / 4+5 / 2=\quad$ is as likely to be rearranged vertically before rewriting with C.D. by good computers as by poor ones.
3. Good computers use pencil and paper more than would appear necessary--especially with simple exercises. They do, however, tend to do more "'mental arithmetic' than do poor computers. For example a girl with an l.0. of 121 , who did all the exercises with only 3 errors, first tried the exercise
$19 \times 20=$ \qquad by saying " x 0 is $0 ; 0 \times 1$ is $0^{\text {:' }}$; she hesitated and asked "can 1 write this in column form?" !/hen told "yes": she rewrote the 20 under 15 , then said--quite comfortably now--'0 times ? is $9 ; 0$ time 1 is $0 ; 2$ times ? is 18; write 8 and carry $1 ; 2 \times 1$ is $2,+1$ is 3." The work was arranged like this. lith partial 19 products written, she then said: "Add, $\quad \frac{20}{00}$ bring down $0 ; 8+0=8$; bring down 3, answer is 380.1

$$
\frac{38}{380}
$$

Another example is the bright pupil who found the product $2 / 3 \times 3 / 5=\ldots$ this way. $\frac{2}{3}=\frac{10}{15} \quad 10 / 15 \times 9 / 15=90 / 225=$ $3 / 5=9 / 15$
4. Good computers appear to be much less dependent on the arrangement of an exercise--vertical or horizontal (especially noted in fractions)--to provide a clue to the anpronriate algorithm than do poorer computers. For example, two exercises in fractions were $3 / 4-1 / 2=$ \qquad and $32 / 5$ $-43 / 10$
The good-computer was quite likely to rewrite both as equivalent fractions and subtract correctly. A poor computer might have done one of these one way and the other another way as did this pupil. $3 / 4-1 / 2=2 / 4(113-1=2 ; 2$ can go into 4 so 1 can use 4 for the determinant ${ }^{\prime \prime}$).
$82 / 5=4 / 10$
$\frac{4}{4} 3 / 10=\frac{3 / 10}{1 / 10}$
5. The good computers did much better than the poor ones in the final group of eight comparison exercises both with their choices and their reasons. The answers of a good computer will illustrate. $39 / 10+1$ is larger than $39 / 10+7 / 8$ "because 1 is greater than 7/8." $35 / 6+7 / 4$ is greater than $85 / 6+1$:'because $7 / 4$ is $13 / 4$. You are only adding 1 here; and you are adding $3 / 4$ extra here." 10 1/9-7/8 is greater than $101 / 9-1$ "because you are only subtracting 7/8 here and here you are subtracting a whole, like ?/8." $123 / 8$ - 1 is greater than $123 / 8-5 / 4$ 'because $5 / 4$ is greater than 1.111×5 is greater than $2 / 3 \times 5$ 'because 1 is greater than $2 / 3.1 \mathrm{~B} / 2 \times 6$ is greater than 1×6 "because $3 / 2$ is $1 / 2 .^{\prime \prime} 17 \div 5 / 8$ is greater than $17 \div 1$ 'because 5/8 is less than 1 ; so you are dividing by more here ${ }^{11}(17 \div 1)$. $17 \div 1$ is greater than $17 \div 5 / 2$ "because this is like 2 1/2 (5/2) and if you divide 17 by $21 / 2$ you won't get as great a number as 17."
6. Good computers seem to have better memories. For example, once they have identified an exercise as requiring a certain algorithm, they are quite likely to remember and use it correctly. In an exercise such as $7 / 8 \leq 2 / 3$ the good computer decides the appropriate rule is "write the reciprocal of the divisor and multiply." He remembers the rule and uses it correctly. The poor computer often has difficulty in deciding whether this rule is used in multiplication or division and whether it is the divisor or the dividend that is written as a reciprocal.
7. Good computers, more often than poor computers, appeared to sense when an answer was wrong and proceeded to make corrections. For example one pupil first got 315 as a quotient for 15/7590. In multiplying the 5 of 315 by 15 he discovered that $5 \times 15=75$. He readily saw that this meant the 3 of 315 was wrong. He did the exercise over and produced the correct answer 506.
8. The thinking of good computers of ten ran ahead of their words or pencils. One pupil in adding the column $7+5+2$ +4 with a carried 2 above the 7 said "that's 2 and 4 is 8 , +5 is $13,+7=20.1$ Her thinking actually combined the two 2's first and then $4+4=8,+5=13,+7=20$. Another pupil in adding 64 said " 8 and 4 is 12 , carry my 1 , 78
6 and 3 is 13 and 1 makes 14." She explained that she said "6 and 3 " instead of " 6 and 7" because she was thinking of the 3 of 13 .
9. Good computers tried out computations mentally and quickly as in finding a common denominator or a quotient digit. For example, a pupil quickly chose 24 as the C.D. of $5 / 8$ and $1 / 3$ after quickly trying "in her mind" 12 ('3 will go into 12 but 8 won't"), then 16 ("8 will go into 16 but 3 won't"); then 18 (" 3 would go into 18 but 8 won' t "); finally $8 \times 3=24$. Another pupil in choosing the first quotient digit for $74 / 6484$ said " 7 goes in 64 nirie times, but 9×4 is 36 which would make it 66 , so you multiply 8×74.1 Many other pupils laboriously made the multiplications aside with pencil and paper.
B. Poor Computers

1. Poor computers' stock of whole number facts is limited. They rely heavily on a fey retained facts such as doubles, or products with 5 as one factor, from which to derive unknown combinaticns. They make extensive use of counting to make combinations.
2. Poor computers often make errors in whole number operations when their counting, or other derivations of unknown combinations, become too involved for their short memory spans. For example, a pupil may try to derive a combination such as 7×2 by recalling $7 \times 7=43$: then addinc by countin! $49+7=56$ and $56+7$ but getting something other than 63 .
3. Poor computers have much more trouble with fractions than with whole numbers. Primitive methods such as counting are not as useful in fractions as in whole numbers, although a few pupils tried to think with "pieces of Die" in operating with fractions.
4. Poor computers have difficulty remembering the conventional operational algorithms--especially in fractions. Moreover they have difficulty in matching those they do remember with the right exercise. So they devise simple, and what seans to them as obvious, procedures such as adding numerators and then adding denominators for the sum of two simple fractions.
5. : When poor computers encounter difficulty with an improvised algorithm, they cirten switch to somethine else that will produce an answer, however remote from the proper procedure it may be. For example, in the exercise $7 / 8 \div 2 / 3=$ \qquad one pupil said " 2 divided into 7 ; you can't do that; so itwould be ... (pause); change this (7/8) to $8 / 7^{\prime \prime}$, wrote $3 / 7 \div 2 / 3$ "2 divided by 3 is 4; 3 divided by 7 is ..." (pause): "it would have to be $21(3 \times 7) .1:$
6. Poor computers tend to relly more on aids to memory. For example, in adding the column $9+8+1+8$ (9 at the top)
 aside 17 and said ${ }^{\prime \prime}$? $9+7=16$ (counting dots); put down my 6 $\frac{9}{26}$
and carry my 1; 1 and 1 are 2."
7. Uhat appear to be careless errors of poor computers are often supported by a reason--even if faulty. For example, in multiplying 304 by 6 a pupil wrote 1804 , seemingly failing to add the carried 2 to the 0 of $6 \times 0=0$. Actually the pupil said " 6 times 4 is 24 ; put down the 4 and carry 2 (written above 0 of 304); 0 times $2=0 ; 6$ times $3=18.1$
8. Poor computers have great difficulty with long division as in $74 / \overline{6484}$. They will make several trial multiplications aside in an effort to find a quotient digit. The factors they choose to multiply the divisor by are often quite arbitrarily chosen. In the excrcise $48 / \overline{93}$ a pupil multiplied
aside 48 by 2 ; by 3 , by 5 , by 7 , by 8 , and by 9 in an attempt to find the correct quotient digit. In long division, other poor computers will design unorthodox algorithms that yield incorrect answers. An example is the practice of dividing by one digit of the divisor at a time.
9. Poor computers of ten did not hesitate to reverse minuend and subtrahend in subtraction. For example, $86-49$ may yield 43 as an answer with this explanation "h from 2 is $3 ; 4$ from 8 is $4^{\prime \prime}$; or in the incorrect solution of $82 / 5-43 / 10=$ $41 / 5$ one pupil said " $8-4$ is $4 ; 3-2$ is $1 ; 5-10$ is 5.1
10. Poor computers frequently confuse 0 and 1 , as in $153 / 4 \div$ $3 / 4=150 / 4$ or in rewriting 708 as $7-9-18$. This pupil said "subtract 1 from 0 and leave it 9 ; make 8 into 18. . In another exercise $19 \times 20=\ldots$ another punil wrote 19 above 20 and said " $9 \times 0=0 ; 0 \times T=1$ for a partial product of 10. Then $9 \times 2=13 ; 2 \times 1=2,+1=3^{\prime \prime}$ for partial product of 38 -.
11. Poor computers are quite likely to be confused in arranging the partial products of multiplication--especially when the factors contain zeros. For example, in 304 a pupil wrote 1324×506 $\frac{1520}{17024} \quad$ There were many more examples of other faul ty arrange17024 ments of partial products in this exercise.

Conclusions

For the 176 pupils interviewed in this study it appears that these conclusions are justified.

1. Pupils did vary widely in the computational strategies they employed in exercises with whole numbers and with fractions.
2. Some orthodox strategies were used infrequently. For example, few pupils in the division of fractions wrote the reciprocal of the divisor and multiplied. Unorthodox strategies were frequently observed--some yielding correct answers and some incorrect ones.
3. There was very little evidence of "mental computation," that is, independence of pencil and paper--even in such simple exercises as $9 / 10 \div 3 / 10=$ \qquad or $3 / 4-1 / 2=$ \qquad .
4. There was heavy dependence on the arrangement of the exercise to provide a clue to computational strategy. Many pupils proceeded comfortably with an operation only after they had written in vertical form an exercise presented horizontally in sentence form.
5. Early developmental strategies were often retained. This seemed to be more often tinc case in operations with whole numbers than with fractions. The frequent reliance on counting in operations with whole numbers is an example.
6. The vocabulary of ten did not correctly express a pupil's thinking. For example, in 86 - 49, a pudil would say "vou can't take 6 from g"" or "g into 6 won't go" so borrow land make 6 a 16 . Then 9 from 16 is 7.11
7. Good computers recalled basic combinations readily and followed orthodox strategies closely. Poor computers often derived basic combinations they could not recall and devised quite umorthodox strategies to do this.
8. Very lityle practice of testing, by estimate, the reasonableness of ansivers was observed.
9. It was especially apparent in long division that many pupils depended upon written trial and error to find quotient digits.
10. Some of the concepts emphasized in "llodern Mathematics" programs were infrequently apparent in the computational strategies employed. For example, few pupils thought of "regrouning" the 8 tens and 6 ones in 86 as 7 tens and 16 ones. They much more frequently thought "borrow one from 8 and add it to 6." Moreover, felv thought of subtraciion as the inverse of addition or division as the inverse of multiplication.
11. In the fraction comparison exercises, where pupils were asked to use their pencils only to check one of two choices, many needed actually to perform the indicated operation before making a choice.
12. There was a frequent practice of continuing a computational strategy throughout the exercises of one groud. The same was true from one group to another if the exercises were similarly arranged. For example a pupil who added numerator and clenominators in $3 / 4+5 / 2=$ \qquad would continue to do so with the remaining addition exercises with fractions. Or a pupil who subtracted the smaller digit from the larger in $36-49=43$ would continue to do so in 708-329 to get 421 .
13. Recorded interviews with individual pupils is a promising technique for identifying computational strategies of pupils. it is promising for research as well as the classroom teacher.

Recommendations

1. Recorded interviews with pupils as they compute should be more widely used in research studies. They should also be used by the practicing teacher to the extent that time permits. It is suggested that early each fall a toacher do three to five interviews in each class taught. Pupils should be selected for interviews on the basis of their written work. For the interview, a variety of simple exercises should be prepared covering computational skills which have been studied previously. The guides for interviews suggested earlier in this study should be observed. It is expected that these sample interviews will give a teacher much clearer insights into the backgrounds of his pupils than would ot'nerwise be likely. Horeover, these insights are likely to be helpful in planning further work with the pupils interviewed as well as the others in the class.
2. Supervisors should also learn the technique of intervielving and use it to prepare taped recordings for use in in-service meetings with teachers.
3. Some school systems have experimented with the employment of what have been called "diagnostic-prescrintive teachers." These full-time special teachers work individually with pupils referred to them by regular classroom teacher. 'Then the pupil goes back to his regular class, the "diagnosticprescriptive teacher" sends to his teacher a diagnosis of his learning difficulties and some suggestions for correcting them. This appears to be a promising practice. In the hands of such a helping, special teacher the recorded interview, such as used in this study, should be very helpful. For example, a pupil's teacher may be advised whether the peculiar computational strategy he uses should be refined and improved or replaced because it is wrong arithmetically or is too awkward.
4. Teachers should encourage pupils to reveal individual strategies in their day-to-day computational exercises. They should not conceal their individual siratenies through fear of ridicule. Rather there should be recognition for originality in thinking.
5. Teaclicrs should give nuch more attention to teaching pupils to check the reasonableness of answers.
6. Bright pupils should be encouraged to develop independence of pencil and paper in many computations. They should not be "impeded" in their quick mental reactions by a requirement to "show your work."

APPE::B:Y A

' 'rong Answers - : 'hole :'unters

$73+2!=$ \qquad -

Answers

7 ? " 3 plus $4=7$ and 7 plus $2=7,8, \therefore$ " wrote 7 in tens and $?$
in ones column.
$107 \cdot 4$ plus $3=7$ and 2 plus $\varepsilon=10 "$.
of 144 and 3 is $8 ; 2$ and 7 is \because.
37 :4 nlus 3 is 7 and 7 olus 2 is $8 "$.
?f $\quad 13$ and 4 is $8: 7$ and 2 is $2 '$.
$107 \quad \cdot 4+3=7: 7+2$ is 10^{\prime}.
lu2 :iis read 73 as 76 then thought $(7 i-1)+(24+1)=75+25=$ 10n. Somehor! recorded 102.
$0 \quad 1 \cdot 7+2=9: 3+1=6$.
Add 64
78
Answers

```
132 Failed to add the carried one in ten's column.
\(141 \quad \cdot 6=4\) is \(11: 7+6+1=14:\).
\(132 \cdot 0+4=12: 7+6=6+6+1=13^{\prime \prime}\).
\(115 \cdot 6+7=13\) put doun 1 carry 3 (above 4 ) \(n+4+3=15\).
\(143 \quad " 4+8=13,6+7+1=14^{\prime}\).
\(152 \quad " 8+4=12 ; 8+6=14,+1=15 "\).
\(132 \quad 11+4=12 ; 7+6=13\) (counted fingers).
```

Add 705
532
291
478
Answers
$2015 \quad \because 8$ and 1 is 8 , plus $3=16$, plus $0=25^{\prime}$.
$2017 \quad \because \because+0=1 S$, nlus $1=1 ?$, plus $O=27.1$ Counted by moving pencil point in pairs.
2017 "in and 8 is 13 , one more is ly, and 8 is 27".
$2014 \quad " 3+1=9$, plus $3=15$, plus ${ }^{2}$ (counting fingers) $=24^{\prime}$.
$2 i 24 \quad \quad 13+1=9 ; 9+3=19$, rlus $j=24^{\prime \prime}$ carried $2, \cdots+2=5$, 017 plus ? $=14$, plus $7=22^{\circ}$ (counted for sums).
2017 i'g and 3 is $17 ; 17+3=26$, and $1=27$.
$1813 \quad$ " $9+8=17,+1=18,+5=29$ " for ones column. $12+7=9,+5=14,+2=10$ and $16+4=181$ for hundreds column.
1915 Correct sum of 26 for ones column and 21 for tens column but carried 1 instead of 2 to hundreds column.
$1216 \quad 1 \cdot 9+1=10 ; 10+8=18 ; 18+8=25$ (miscounted fingers) tens coluinn correct. $+7+2=9$, plus $2=10$, olus $5=15$, $+4=1 \mathrm{~g} \cdot$ for hundreds column.

Add
799
538
2.1
(continued)
473
$1245 \quad 17+3=17+1=12, ?=25^{\prime}$ for ones column, carried 2. ${ }^{\prime} 0+3=3,+9=12,+7=14^{\prime}$ for tens column, carried 1 . $" 7+5=13,+2=14,+4=19,+1=19$ for hundreds column.
$1: 16$ ones and tens columns correct, $14+2=6,+5=11,+7$ (counting) $=17,+2($ counting $)=19^{\prime \prime}$ for hundreds colunn.
$18+1=9+3=17 ; 17+9$ (counting by twos) $=25 \cdot "$.
$19+3=13,+7=20,+2=22^{\prime \prime}$ for tens column. $115+2=17,+1=1 ?+8$ (counting fingers) $19,20,21$. . . $27^{\prime \prime}$.
ones and hundreds columns correct. For tens column started with 7 and counted up the column, stopping at 22 instead of 21.

For ones column, $' ?+B=17, B+1=n$, and $17+9=25^{\prime}$:
to add $17+9$ said 17 and $?$ is 16 : 1 plus 1 is 2 "'.
" 18 and 8 is $16,+1$ is 17 , and \because is 25 (counting fingers). if and 1 is 9 ; and y is 18 ; 10 and 3 is 34° for ones column. $15+2=7$, and 7 is $14 ; 14+4$ is 23 (wrote 1 aside for 28$),+2$ is $30^{\prime \prime}$ for hundreds column. " $6+8=16,+1$ is 17 ; 17 and 9 is $27^{\prime \prime}$ (counting) for ones column.,
2414 lin and 8 is is and 1 is 18 , and 8 is 24^{14} for ones column. 'i7 and 5 is 12 , and 2 to carry is 14 , and 2 is 16 , and 4 is $24^{\prime \prime}$ for hundreds column.
$: 10+1=10,+8=18,+\pi$ (counting) $=24:$.
' \because, and B are 17 , and i is $18,+8$ (countins in pairs) $=28 "$. Correct 26 for ones column, correct 21 for tens column. l:rote 21 and carried 2 to hundreds column. 18 for hundreds column--wi thout carried $2-$ wrote 18 by 216.
($+3=10,+2$ is $1 \dot{2},+2$ is 22 for tens column. $' 9$ and 1 is 10 , and B is 18 , and 8 more (counting) is $28^{\prime \prime}$ for ones column.
516 : $7+2$ (carried) is $14,+5$ is $18,+2$ is $21,+4$ is 25 for

column.

 " 9 and 3 is 17 , and 1 is 19 , and 9 is $27 . "$ (For $19+?$ thought $19+1$ is $20,+7$ is 27) for ones column. $\because 2$ (carried) $+3=5,+a=14,+7=24$ for tens column (for $14+7$, thought $7 \times 3=24$).${ }^{\prime \prime} 9+(8+1)=18,+3$ (counting) $=24^{\circ}$ inr ones rolurin. 'in +8 (counting fingers) $=17,+8$ (countin? fingers) $=2($, $+1=27^{\prime \prime}$ for ones column.

530 (continued)
21
47
$2014 \quad \cdot n+8$ is $15,+1=16$, and 8 more would be $24^{\prime \prime}$.
1227 Started on left, got 17 for hundreds column. V/rote 1 and carried 7 above 1 ''s column; not 23 for sum of tens column, wrote 2 carried 3 to one's column. Then $S+9=16,+9=$ $24,+3=26,+1=27$. 'rote 7 in one's column of sum.
2046 One's and hundreds columns correct. For ten's column 2 (carried) $+0=2,+3=5,+9=14,+7=24$. Explained " $14+6=20$ plus 4 left over $=24^{\prime \prime}$.
1807 " 9 and 8 is 17 , and 1 is 19 and 18 is 27 .
" 0 and 3 is 3, and 9 is 12 , plus 7 is 19 , and 1 is $20^{\prime \prime}$. 17 and 5 is 12 , plus 2 is 14 , and 4 is 18 , and 1 is 101.
1986 lst column correct. Then $9+7=16,+2=18$. skipped the $2014 \quad " 9+1=10,+\delta=18,+5=24$ (counted fingers).

93-32=1
Answers
31 "2 from 3 is $1 ; 3$ from? is 3 ".
31 !'3 minus 2 is 1 ; 3 from? is $3^{\prime \prime}$.
$31 \quad 13$ from $2=1 ; 3$ from $9=3^{i i}$.
31 "3 from 2 is 1 , and 9 from 3 is 3 ".
51 "2 from 3 is 1 ; and 3 from 9 is 5 ".
31 " 3 from 9 is 3 (thinking 3×3) and 2 from 3 is 1 '
71 '2 from 3 is 1 , and $9-3$ is 7".
$31 \quad 113-2=1$; and $3-9=3$ (thinkina: 3 goes into ? three
151 Vertically "13-2 = 11 ; carry 1. That would make 18, $10-3=15^{\prime \prime}$.

Subtract 86
49
Answers
43 ' 9 from $6=3$ and 3 from $4=4^{\prime \prime}$.
$43 \quad$ in $-6=3 ; 3-4=4^{\prime \prime}$.
$40 \quad{ }^{\prime \prime} \mathrm{F}$ from 6 is $0 ; 4$ from 3 is 4 ".
$44 \quad 118-4=4$ and $6-9$ is $4^{\prime \prime}$.
$43 \quad " 0-6=3 ; 8-4=4 "$.
43 lig from 6 is $3 ; 8$ from 4 is $4^{\prime \prime}$.
47 "ng from 6 is 7 ; 4 from 3 is $4^{\prime \prime}$.
35
43

117 Borrow 1 from 8 ; make 6 a 16 is 4 :
'that's 7 '. Then $1: 7,8,8,10,11$ that's 117.
43 " 49 take away 6 is $3: 8$ take away 4 is $4^{\prime \prime}$.

```
Subtract 86
\begin{tabular}{l}
86 \\
49 \\
\hline
\end{tabular}
(continued)
35 ' 9 from 16 is 5 , and 4 from 7 is 3 ".
36 ':g.from 16 is 6 (counting 9 to 1e), 4 from 7 is \(3^{\prime \prime}\)
43 counted " 7 , B, 9 " wrote 3 in ones place, " 4 from \(8^{\prime}\) is \(4^{\prime}\)
39 'i:) from 16 is 9 ; 4 from 7 is \(3^{\prime \prime}\).
43 "in - \(6=3\) and \(8-4=4 "\).
35 "' from 6 is 5 , and 4 from 7 is 3 ".
43 " from 6 leaves 3 and 4 from 8 leaves \(4^{\circ}\).
37 "I6 take away? (counting 9, 10, 11... 16) is 5; 7 take
    away 4 is \(3^{\prime!}\).
38 " \(16-9\) (counting, \(9,10,11 \ldots 16\) ) \(=8: 7-4=3 \%\).
35 'Irote 7 for 3 and 16 for 6. Said 'that's 5' for \(16-9\)
    and 'that's 3 ' for 7 - 3.
35 "16-9 = 5 and \(7-4=3\) !.
35 "6 and 3 is 15 ": \(7-4\) is 3 ".
43 Counted ' \(6,7,8,9\) ', wrote 3 . Then : 4 from 8 is 4 '.
36 '9 from 16 is 6 ; 4 from 7 is \(3^{\prime \prime}\).
47. \(16-9=7\) (counting) ; 4-8 = 4".
35 ' 9 from \(16=5 ; 4\) from \(7=3\) ".
\(33 \quad " 16-9=8 ; 7-4=3 "\).
43 " 6 subtract from 9 will be 3 ; 8 subtract 4 will be 4 ".
\(36 " 16-9=6 ; 7-4=3 "\).
\(27 \quad י 16-9=7 ; 7-4=2 \%\).
38 '9 from 16 is 8 ; 4 from 7 is 3 ".
```

Subtract 703
329
Answers
279 ' You have to borrow from 7 ; make it a 6. Then borrow from 6 to make 0 a 10 . Borrow from 10 to make $ᄋ$ an 18 . Then $18-9=9 ; 9-2=7$; and $5-3=?$. Borrow from 7, make it a 6 ; make 8 an 18 , then $18-n=9$. can't take 2 from ?, so borrow from 6, make it a 5 and 0 a 10. $10-2=8$ and $5-2=3$. (7 pupils)

472 Borroved fron n made it a 9 and 8 an 18 . Then $18-9=9$: $9-2=7$ and $7-3=4$. (10 pupils)
401 "g from 8 is $1 ; 2$ from 0 is $0 ; 7$ from 3 is $4^{\prime \prime}$
389 Borrowed from 7, made 8 an 18 and 0 a 10 . Then $18-9=$? ;
wrote 0 , '3 goes into 7, four times'.
and $6-3=3$.
421 ' 9 from 8 is $1: 2$ subtract C is $2 ; 7-3=4^{\prime \prime}$.

Subtract 70.5

459 $\quad 48-9=3: 7-2=5 ; 7-3=4^{\prime \prime}$.
"'g from 8 is 1 borrow 1 from 7, make it a 6 and 0 a 10 . Then 2 from $10=3$ and 6 from 3 is $3^{\prime \prime}$.
479 "Boriow 1 from C, make it a 9 and 8 an 18 . Then half of 18 is $3: 2$ from 9 is 7, and 3 from 7 is 4^{11}.
369 ! $/$ rote 6-9-18 for 703. Then " 9 and 9 is 18; 2 from 9 is 6 (counting), 3 from 6 is $3^{\prime \prime}$.
401 ' 3 from 9 is 1 ; 0 from 2 is $0: 3$ from 7 (counting $3,4,5,6,7)$ is $4^{\prime \prime}$.
381 "'g - $8=1$ and 0 can't a o into 2 so borrow from 7 , make it a 6 and 0 a $10.0^{1:}$ Then " $10-2=8$ and $3-G=3 "$.
389 ':9 from 13 is ? : 2 from 9 is 8 ; 3 from 6 is $3^{\prime \prime}$.
101 : 3 from? is 1 ; 0 from 2 is $0 ; 3$ from 7 is (3, 4, 5,6, 7) 4^{11}.
309 "Borrow from 7 leaves 6 put 1 at 8 and 18 from ? is ?, you can't take 2 from 0 , so it's 0 , and 6 from 3 is $3^{\prime \prime}$.
388 "Borrow from 7, make it 6, make 0 a ten, change 0 to 9. Then $" 9+3=17 ; 17-9=8 ; 10-2=8 ; 6-3=3 "$.
489 Change 8 to $18 ; 13-9=9$. "Can't take $\dot{1}$ ' from 2 so change 0 to a $10 ; 10-2=8 ; 7-3=4^{\prime \prime}$. (2 nupils)
377 Wrote 703 as $6-9-18$. Then $18-9=7$ (thinking $3+n$): $9-2=7 ; 6-3=3$.
401 "ig take away 8 leaves 1 ; 2 subtract 0 leaves $0 ; 7$ take away 3 leaves $4^{\prime \prime}$.
$13 \times 20=$ \qquad
Answers:
20\% $\%$ " $0 \times 9=0 ; 2 \times 1=2$ 2. (8 pupils)
$20 \quad \because \times 0=0 ; 1 \times 2=20 \cdot$.
$390 \quad " Q \times 0=0 ; 0 \times 1=1 "$ so 10 for $1 s t$ nartial product.
$10 \times 2=18 ; 2 \times 1=2,+1=3$, so 38 - for 2 nd partial product.
$3800 \quad 10 \times 9=0 ; 0 \times 1=0 ; 9 \times 2=18 ; 2 \times 1=2,+1=3.1$ Arranged vertically. Urote single product 3800. (3 pupils)
$480 \quad$ " $9 \times 0=0 ; 9 \times 2=18 ; 1 \times 0=0 ; 1 \times 2=31190+30-$ $=480$.
$2180 \quad$ "n $\times 0=0 ; 9 \times 2=18.1$ "rote 80 and carried 1 , then
"1 $\times 20=20,+1=21.4$ Yrote 21 with 80 for 2180 .
\therefore A blank indicates a partial product was indented. For example, partial products of 10 and 38 were written 10.
:2* It will help in reading these accounts if this product is first rewritten, as the purils did, either as 19 or 20.
$20 \quad 19$
\qquad (continued)
$239{ }^{\prime \prime} 0 \times 2=9 ; 0 \times 1=1: 2 \times 9=18: 2 \times 1=2 "$. Irote $19+23$ for sum of 299 .
 Yrote 0 and 38 for sum of 30 .
$\because G \quad \therefore 0 \%=9: 9 \times 2=18 ; 1 \times 0=1 ; 1 \times 2=2^{\prime \prime}$.
!!rote 189 and 210 for sum 399.
$200 \quad$ " $0 \times 9=0 ; 0 \times 1=0 ; 2 \times 9=18 ; 2 \times 1=2$ ". "rote 00 and 28 -. In adding " 0 ; 0 from 8 is 0 ; $2^{\prime \prime}$ for 200 .
$2180 \quad 10 \times 0=0: 0 \times 1=0 ; 2 \times ?=1 \cap ; 2 \times 1=2^{\prime \prime}$. 'rote single answer 2130.
20 ' $1 \times 0=0 ; 1 \times 2=2^{\prime \prime}$.
20 " 0 from 19 is 0 ; and 2 from 1 is 2 ".
$280 \quad{ }^{\prime} 0 \times 5=0 ; 0 \times 1=0 ; 2 \times 9=18 ; 2 \times 1=2^{\circ}$. Ndded $00+23-$ for 280. (6 pupils)
38 " $9 \times 2=18: 2 \times 1=2,+1=31$.
180 " $9 \times 0=0 ; \rho \times 2=18: 1 \times 0=0$; and 1 times 0 again". !rote 180 and $00-$ for sum of 180 .
 Vrote 38 under 19 for sum 379.
$48 \quad " 0 \times 9=0 ; 0 \times 1=0 ; 2 \times 0=18 ; 2 \times 1=3,+1=41$. Urote $00+48=48$.
$3800 \quad{ }^{\prime} 0 \times 9=0 ; 0 \times 1=0 ; 2 \times 9=18 ; 2 \times 1=2,+1=3^{\prime \prime}$. :Urote single product 3800 .
 1/rote 38 under 19 for sum of 57.
300 " $0 \times ?=0 ; 0 \times 1=0 ; 2 \times 7=13 ; 2 \times 1=2,+1=3 "$. Arranged 00 and 30 . Said 'brins down $0 ; 0+8=0$ ("can't add nothing and 3 and get \mathbb{C} '), 3.
$360 \quad: 0 \times 2=0 ; 3 \times 2=16: 1 \times 0=0 ; 1 \times 2=2^{1:}$. Added 160 and 20- for 3 ro.
218 $\quad 12 \times 1=2 ; 2 \times 9=18$ for $219.0 \times 1=0 ; 0 \times 9=0 n$, $21 \hat{\circ}+\sim 00=218^{\prime \prime}$.
$2180 \quad \therefore 0 \times 2=0 ; 0 \times 1=0: 2 \times 9=18: 2 \times 1=2$ for 210-, $00+213-=2190$.
$480 \quad$ 1:rote 20 under $19 ;$ "put down $0 ; 9 \times 2=18 "$. Wrote S and carricd 1 above 1 of $19.2 \times 2=4$.
308 Added coluan of 19 twenties correctly for 330 but wrote 308 for sum.
$38 \quad 10 \times 19=00 ; 2 \times 10=38 ; 00+38=38^{\prime \prime}$.
$1820 \quad י 0 \times 1=0 ; 0 \times 9=0 ; 2 \times 9=18 ; 2 \times 1=2$. $00+182-=1820$.
$20 \quad " 0 \times 9=0 ; 2 \times 1=2^{1 ;}$ Doubted this answer so wrote column of 19 twenties and added correctly.
380 and 20. 'rote 20 under 19. $10 \times 9=0: 0 \times 1=0$: $2 \times 9=13 ; 2 \times 1=2,+1=3$ ' correctly. Then $" n \times 9=0:$ $2 \times 1=2 . "$ Said this was :'short way' and both answers

$2 \ln \quad " 9 \times 0=0 ; 2 \times 2=1 ? ; 1 \times 0=0 ; 1 \times 2=6,180+60=$ 240'.
13) $\times 20=$ \qquad (continued)

```
\(20180 \quad \because \times 2=0 ; 0 \times 1=0: 2 \times ?=10 ; 20 \times 1=20\)
    \(00 \div 2018-=20130\)
\(2180 \quad\) " \(9 \times 0=0 ; 1 \times 0=0 ; ? \times 2=18 ;\) carry \(1: 2 \times 1=2\).
    \(00+218-=2130^{\prime \prime}\)
```

Multiply 58 75

Answers

$4450 \quad " 5 \times 8=40 ; 5 \times 5=35,+4=39$ " Second product $406-$ sum of $390+406-=4450$
$4330 \quad 18 \times 5=40 ; 5 \times 5=25,+4=29 ; 7 \times 8=54 ; 7 \times 5=$ $35,+5=40^{\prime \prime}$ Added $290+404-$ for 4330 . (5 pupils)
$4345 \quad " 8 \times 5=35 ; 5 \times 5=25,+3=28$ " Second product $4 n$ (sum of 285 and $406-=1345$.
4450290 for first product, then " $7 \times 9=50 ; 7 \times 5=35,+5=$ 41^{11} Sum of $290+416-=4450$.
4370 Correct partial products 290 and 406 -. Added " $0,9+6=$ $17 ; 2+1=3$, and $4: 1$ for 4370.
 $15 ; 2+n=2$, and $4^{\prime \prime}$ for 4250 .
4320 lst partial product 200 . Then ${ }^{\prime} 7 \times 8=63: 7 \times 5=35$, $+6=$ (counted) 40.1 Added $290+403-$ for 4320.
4550 Ist partial product 490 , second $406-$, sum 4550
$390 \quad " 5 \times \varepsilon=40 ; 7 \times 5=35,+4=30^{11}$ wrote single product 390. (8 pupils)

688 Ist partial product 290 , then " $7 \times 3=48 ; 7 \times 5=35$, $+4=39^{\prime \prime}$ Added $290+398$ for 688.
4230 Correct partial products 290 and 406-. Then "n from 0 is 0 : irom 9 is 3 ; 0 from 2 is $2 ; 4$ from nothing is $4^{\text {i }}$
35820 " $8 \times$ 安 $=40 ; 5 \times 5=25$, $+4=231$; " $7 \times 8=54^{\prime \prime}$ (wrote down 5 rows of 8 marks each and counted) : $7 \times 5=35$. Second partial product written 3554-. Sum $280+3554-=$ 35820 .
4370 Ist partial product 290 ; then ${ }^{1} 7 \times 8 \times 57$ (said ${ }^{117 \times 5=}$ $35 ; 7 \times 6=42 ; 7 \times 7=49: 7 \times 8=49,50,51,52,53$, $\left.54,55,56,57^{\prime \prime}\right) 7 \times 5=35,+5=40^{\prime \prime} 200+407-=$ 4370.

4140 lst partial product $290 ; 17 \times 8=35 ; 7 \times 5=25,26,27$ $\ldots 35$ (on finẹers),$+3=38.1$ Sum of $2 ? 0+385-=4140$.
40390 ist partial product 290 . $117 \times 8=56: 7 \times 5=35.1$ U/rote 3 partial products 290 , $56-$ and $35--$, sum 40890 .
$6455 \quad 15 \times 8=45 ; 5 \times 5=25,+4=29 ; 7 \times 8=56 ; 7 \times 5=$ $35,+6=61^{\prime \prime}$ Irote 295 as lst partial product and 5160 as second.
4360 Ccirrect partial products 290 and 406 - in adding said $19+6=16{ }^{\prime \prime}$.

Multiply 58

1359 Ist partial product 290 . Then " $7 \times 8=5 i$ (wrote band carried 5) ; $7 \times 5=35$, that'll be one zero' wrote 106- as second nartial product. $290+106-=1350$.
4690 lst partial product $250 ; " 7 \times 3=50(6 \times 6=36,+7=$ $43,+7=50$) ; $7 \times 5=35,+4$ (carried from 5×8) $=$ $39,+5$ (carried from $7 \times 8=50$) $=44$.' Then $290+440-=$ 4690.

4760 Ist partial product 290 . $17 \times 8=57(7 \times 7=19$ and 8 more, $50,51,52 \ldots 57) ; 7 \times 5=35(5,10,15 \ldots 35)$ $+4=39$ (counted) $+5=44$ (counted). ${ }^{\circ}$ Then $290+1477=$ 4760.

575 ${ }^{15} 5 \times 8=40 ; 5 \times 5=25 ; 7 \times 8=56 ; 7 \times 5=35$. Wrote 4 partial products $40,25,560$, and 350 . Sum 975.
3820 1st partial product $270 ;-17 \times 8=63$ (wrote 7, 14, $21 \ldots$ 63), $7 \times 5=35^{\prime \prime}$. !'rote $353-$ as 2 nd partial product. Then $290+353-=3320$.
4230 Correct partial products 290 and 406- then adding: "bring down $0: 6$ and $9=3$, then 2, and bring down $4{ }^{\prime \prime}$.
4760 Ist partial product $230 ;{ }^{\prime \prime} 7 \times 8=57(7 \times 7=49$ and $\&$ more $50,51,52 \ldots 57) ; 7 \times 5=35(5,10,15 \ldots 35),+4$ ($36,37 \ldots 3.2$),$+5=40.11$ rote 447 - as 2 nd partial product. Then $290+447-=4760$.
3350 Ist partial product 290 ; then ${ }^{\prime} 7 \times 8=56 ; 7 \times 5=35$, $+5=30^{\circ} \cdot 1 /$ rote 306 - as second partial product.
$4450 \quad 1$ st product 290 ; then $1: 7 \times 8=56$ (wrote 6 as carried digit) : $7 \times 5=35,+6=41$.: Then $290+416-=4450$. $" 3 \times 7=56 ; 7 \times 5=35,+2=37 . "$ Wrote 3760 as single product.
—— Ist product 290 ; then $7 \times 8=63$ (counted by 7's) ; $7 \times 5=35$ (counted by 5's), +6 (counted) $=41$ for partial product of 4130 . ' 1 ith prompting, corrected before completing.
$4310 \quad .5 \times 8=40 ; 5 * 5=25.1$! rote 250 as 1 st oroduct. Then $250+1: 06-=4310$.
633 250 first product ; ' $7 \times 8(8,16,24 \ldots 48)=48 ; 7 \times 5=$ $35,+4=39 .{ }^{\circ}$ Then $290+398=6.98$.
4250290 and 4060 for partial products. in $+G=15: 2+n=$ 2 ; bring dowin 4° (failed to add carried 1 from $9+6$).
4320290 first product. $17 \times 8=53(8 \times 8=64$ so $8 \times 7=53)$ $7 \times 5=35,+5=40.1$ Then $290+403-=4320$.
4410290 first product. " $7 \times \delta=62 ; 7 \times 5=35,+6=41$ " $290+412-=4410$.
$4398 \quad$ " $9 \times 5=40 ; 5 \times 5=(5,10,15 \ldots 30) 30,+4(31,32,33)$ $=33^{\prime \prime}$ So first product 330 and $330+406-=4398$. Carelessly urote 8 for 0 as ones digit.
1101 Starting on left, :'7 $\times 5=35$, carry $3: 7 \times 8=56,+3=$ $57^{\prime \prime}$ for 553 ; " $5 \times 5=25: 5 \times 3=40,+2=42: 1$ for 542 . $559+542=1101$.

Multiply 58 (continued)
$4450 \quad 5 \times 8=40 ; 5 \times 5=25,+4=29 ; 7 \times 8=56 ; 7 \times 5=$
 $115 \times 8=45 ; 5 \times 5=25,+460$.
$5780 \quad 5 \times+7=40$ (counted by $5^{\prime} \mathrm{s}$ keeping count on fingers) :
$5 \times 8=49$ $5 \times 5=25,+4=28 ;{ }^{11} 7 \times 8$ is $16,+7=23,+7=30$, $+7=37,+7=44,+7=51.1$ Then $51+4$ (written above
$5 \times 8=40 ; 5 \times 5=25,+4=29 ; 7 \times 8=57(7 \times 7=4$? , $50,51,52 \ldots 57) ; 7 \times 5=35,+5=40$. Then $290+$ $407-=4360 ; 5 \times 5=25,+4=29 ; 7 \times 8=50 ; 7 \times 5=$
$5 \times 8=40 ; 5 \times 5=$
$\begin{array}{ll}5150 & 5 \times 8=40 ; 5 \times 5=25,+4=2 . \\ 35,+5=38 ; 290+386-=4150 .\end{array}$ $5 \times 8=45 ; 5 \times 5=25,+4=29 ; 7 \times 3=56 ; 7 \times 5=$
$4366 \quad 5 \times 8=45 ; 5 \times 5=25,+406-=4355$.
$4455 \times 8=45 ; 7 \times 5=40,+4=44$.
Multiply 304

$$
506
$$

Answers:
$16,804 \quad: 6 \times 14=24 ; 6 \times 0=0 ; 0 \times 2($ carried $)=0 ; 6 \times 3=$

$18: 110 \times 4=20: 5 \times 0=0: 0 \times 2$ (carried) $=$
$161,964{ }^{16} 6 \times 4=24 ; 6 \times 2$ (carried) $=12 ; 6 \times 3=18,+1=$ $19^{\prime \prime}$ for 1.924 . "0 $\times 4=4 ; 0 \times 0=0 ; 0 \times 3=3^{\prime \prime}$ for
$304-$. $15 \times 4=20 ; 5 \times 0=5,+2=7 ; 5 \times 3=15^{\prime \prime}$ for 1570- confused columns in sum $1 \cdot 4 ; 4 \div 2=6: 9$: $7+3+1=11 ; 5+1=6 ; 1.1$
$171,804 \quad \cdots \times 4=24 ; 6 \times 0=0 ; 6 \times 3=18 "$ for 1304 .
$20 ; 5 \times 0=0 ; 5 \times 3=15,+2=17^{\prime \prime}$ for 17 for $^{\prime \prime} 1324$. $" 5 \times 4=20 ; 5 \times 0=0,+2=2 ; 5 \times 3=13 "$ for $1820-$. $1824+1820-=29024$ (failed to add carried 1 from $8+2$).
161,924 (carried) $=101$ for 1024. "0 $0 \times 4=0 ; 0 \times 0=0$; $0 \times 3=0^{\prime \prime}$ for 000-. $: 5 \times 4=20 ; 5 \times 2$ (carried) $=$ $10 ; 5 \times 3=15,+1$ (carried) $=16^{\prime \prime}$ for $1600-\cdots$
1500
" $0 \times 4=0 ; 0 \times 0=0 ; 0 \times 3=0.1$ for 000 -.
"5 $\times 4=20 ; 5 \times 0=0 ; 5 \times 3=15^{\prime \prime}$ for 1500-. Added only 000- and 1500- for 1500 .
\% Unless otherwise indicated partial products were added correctly.

Multiply 304
506 : (continued)
$17024 \quad 16 \times 304=1024$
. $\times 304=1024^{\prime \prime}$; then $0 \times 4=0 ; 0 \times 0=0 ; 0 \times 3=$ $5 \times 3=15$ " for $1520-$ product written. " $5 \times 4=20: 0 \times 2=2$;
$16,584 \quad{ }^{11} 6 \times 4=24 ; 6 \times 0=0$ for $1520-\ldots$ Sum of 1824 and $1520-=17024$ $" 0 \times 4=0 ; 0 \times 0=0,+2=8 ; 6 \times 3=18 "$ for 1884 $1 " 5 \times 4=20 ; 5 \times 0=0: 0 \times 3=011$ for $000-$ $1884+000-+1570=16584^{2}=7 ; 5 \times 3=15^{11}$ for 1570 from $8+7$)
of 304) ;
Partial pr
$(7$ pupils)
$1: 6 \times 4=24$
' $6 \times 4=24 ; 6 \times 0$ cried) $\times 0=0 ; 3 \times 5=15$ " for 1504. $15^{\prime \prime}$ for 1524.
$3324 \quad 6 \times 304=1824$
$5 \times 0=0 ; 5 \times 3$ wrote 3 zeros; then $5 \times 4=20$: $=3324$. $5 \times 3=15$ for 150n. Then $1824+000+1500$
16,024 16×304 16024 . Failed to multiply by 0 of 506 .

5,924 $\quad 16 \times 4=24=1024+0000+17000$. down 2 zeros; $5 \times 4=304=0000$; for ?nd product "bring 17000. Sum $=18 \times 4=20 ; 5 \times 3=15,+2=17^{\prime \prime}$ for $16 \times 4=24 ; 6 \times 0=6,+2=8$.
$" 0 \times 4=4 ; 0 \times 0=0 ; 0 \times 3=3 " 6 \times 3=18 "$ for 1884 . $" 5 \times 4=20 ; 5 \times 0=5 ; 0 \times 3=31$ for $304-$.
$6 \times 304=1824$ and $0 \times 304^{5} \times 3=15^{\prime \prime}$ for 1550--. $5 \times 0=0 ; 5 \times 3=15$, Then $" 5 \times 4=29$ 1600-. Sum of $1324+000-+1600^{+}$the 20 is 16^{11} for confused)

151,824 $116 \times 2=12$ and 2 more is $24 ; 6 \times 0=0,+2=2$; $6 \times 3=18$ for $1824 ; 0 \times 304=000-5 \times 4=20$;
$5 \times 0=0 ; 5 \times 3=15$ for $1500-$.
$151,8246 \times 304=1824 ; 0 \times 304=000-: 15 \times 4=20$; bring down 0 (from 304) ; $5 \times 3=15^{\prime \prime}$ for $1500--$.
. 1506 " $6 \times 4=26$, put down my 6 and carry 2 , that's 0 and $3 \times 5=15^{\prime \prime}$ for single product 1506 .
$1518246 \times 304=1824 ; 0 \times 304=000-; 5 \times 4=20 ; 5 \times 0=$ $0 ; 5 \times 3=15$ for $1500-$-.
$17204: 44 \times 6=24 ; 6 \times 3=13,+2$ (carried from 24) $=30.11$ Hrote 204, wrote 0 under 4 of 204. Then $14 \times 5=20$; $5 \times 3=15,+2$ (carried) $=17^{\prime \prime}$ for 17000 and 204 $+17000=17204$.
$151,004 \quad י 4 \times 6=24 ; 0 \times 6=0 ; 3 \times 6=184$ for 1804 .
$0 \times 304=000-$; $14 \times 5=20 ; 0 \times 5=0 ; 3 \times 5=15$;
for 1500--.
$153821 \quad 14 \times 6=21 ; 6 \times 0=0,+2=2,5 \times 3=1.8{ }^{\prime \prime}$ for 1821 .
Then $0 \times 304=000-; 5 \times 304=1520$ for $1520--$.
$1,521,824 \quad 6 \times 304=1324 ; 0 \times 304=0000-; 5 \times 304=1520 \cdots$.
23666
$14 \times 6=26(4 \times 4=16,+4=20,+6=26) ; \quad 12$ $6 \times 2=12 ; 6 \times 3=22(3 \times 5=15,16,17, \quad 12$
$18 \ldots 21,+1=22)^{\prime \prime}$; wrote 0 under 6 of $\because \quad 304$
$2226 ; 0 \times 4=4 ; 0 \times 2=2 ; 0 \times 3=3$,
$+1=4 ;$ then wrote 0 in ones column $\quad \frac{506}{2226}$

$5 \times 3=15,+1=16,+$ another $1=$
17. $\frac{17200}{23666}$
17.

156,864
161,924
for $304-; 5 \times 304=1520$ for $1520--$.
$" 6 \times 4=24 ; 6 \times 2=12 ; 6 \times 3=18,+1=191$ for $1924 ; 0 \times 304=000--5 \times 4=20 ; 5 \times 2=10$; $5 \times 3=15,+1=16$ for $1600--$.
157024
$6 \times 304=1824 ; 0 \times 304=0000 ; 5 \times 304=15200$.
Urong sum from confused aiignment of columns.
$170246 \times 304=1824 ; 5 \times 304=1520$ for $1520 \div$. Falled to multiply by 0 of 506 . (6 pupils)
$173,834 \quad 14 \times 6=24 ; 6 \times 0=6,+2=8 ; 6 \times 3=18 "$ for 1884 ; $0 \times 304=000-; " 5 \times 4=20 ; 5 \times 0=0$, bring down 2 ; $5 \times 3=15,+2=17^{\prime \prime}$ for $1720--$.
154,484
152,624 Correct partial products. 1824, 000- and 1520--. In adding said $4+0=0 ; 2+0=2 ; 8+0=8 ; 2+1=2$; $5+$ nothing is 5 ; bring down 1.
$18246 \times 304=1824,0 \times 304=000-$; failed to multiply by 5 of 506 .

Multiply 304

152,024 $6 \times 304=1824 ; 0 \times 304=000-\quad 45 \times 4=20 ; 5 \times 0=$
$1524 \quad 0 ; 5 \times 3=15^{\prime \prime}$ for 1502 - .
4482 product, 1524. 0,$0 ; 5 \times 3=15^{1}$ wrote one
$4482 \quad 14 \times 6=28 ; 6 \times 2=18 ; 6 \times 3=24+1=251$ $2583 ; " 0 \times 4=4 ; 0 \times 2 ; 6 \times 3=24,+1=25^{\prime \prime}$ for $18 ; 2 ; 0 \times 3=3 "$ wrote 324
$18,824 \quad 6 \times 304=1824 ; 1 " 5 \times 4=20 ; 2=7 ; 5 \times 3=15 "$ for 1570 .
$16824 \quad 6 \quad 1 \% 00$ failed to multiply by 0 of 506 .
$6 \times 304=1824 ; 0 \times 30 \%=0000 ; 5 \times 4=20 ; 5 \times 0=0$;
$5 \times 3=15$ for 15000 $5 \times 3=15$ for 15000 .
2015
$000 \quad$ ' $5 \times 4=20$. Put down 0 , carry $2 ; 5 \times 0=0$;
4218 put down $0 ; 5 \times 3=15$, put down $15^{11} .0 \times 3=$
$205718 \quad 0 ; 0 \times 0=0 ; 0 \times 4=0 ; " 6 \times 4=24$;
18524 18, put down $18^{\prime \prime} \quad 14=2=2 \times 3=$
: $4 \times 6=24$, put down $18^{\prime \prime}$
2, carry 1.1 carry $2 ; 6 \times 0=0 ; 2 \times 6=12$. Put down $0 \times 0=0$, plus another 0.11 Urote 2 zeros $=0$; $15,+1$ (above 3 from $6 \times 2=12$) $=16$. Then $2524+$

Oivide 27/81

Answers
B1: 27=3; $3 \times 27=81 ; 81-81=0 \quad 1 / 27$ won't into $0^{\prime \prime}$ so answer is 30. (2 pupils)
' 2 ' into $8=4 ; 2 \times 4=8 ; 81-3^{-}=1 ; 7$ won't no into $1^{\prime \prime}$ started to make answer 40. Decided this was too much. Stopped.
$81 \div 27=2 ; 27 \times 2=54 ; 81-54=26$ (thought of 81 as 7 - 10 , said 10 from 4 is $6 ; 7$ from 5 is 2); " 27
"2 into 8 goes 4 : 7 into 1 won't os." Couldn't complete.
 11 (left over 1 and 1 of 81) 5 times with $1 / 27$ left over'.
11 R3 Multiplied 7×12 and 7×11. Decided 7 goes into 81 eleven times. Then $81-77=4$ "bring down the 2 (from 27)" to make 24. "7 goes into 24 three times with remainder 3."
$40 \quad$ "2 into 8 is $4 ; 4 \times 2=8 " ; 81-8-=01$; " 27 won't 90 into 1 , so $0^{\prime \prime}$.
3 R211 27 into 81 , three times (thought " $20,40,60,90$, that's 3 times:). $3 \times 2=6 ; 3 \times 7=21$ for 621 . !!rote 621 under 81. Then "1-0 = 1; 1 subtracted by $2=1$; $6-8=2^{\prime \prime}$.
40 RI \quad "2 into 8 goes 4 times" $81-8-=1$:"7 can't go into 1soit's 0 ; $0 \times 7=0$ with ! R." (two nunils)

Divide 27/81 (continued)

3 R10 "27 goes into 81 about 3 times"; " $3 x \neq 7=21$, carry 2, $3 \times 2=5,+2=7.1$ ह.1-71=10.
27 into 81 goes 5 ; put above 1 of $8 i$, 81 below $\mathrm{Ol} ; 21$ into 81 goes 2 put 2 above 3 ; added 4 and $81=162$.
Divide 43/93

Answers

10 P. 45
1 R51
20 R13
1 R41

1844

2
"188 goes into 93 one time." $93-48=45 ;$ " 48 goes into 45 zero times". $45 .-0=45$.
" 43 into $93=1$ mentally $2 \times 48=96$ and $36-93=3$. Then $40+3=51$.
" 8 goes into 3 zero times ; 4 into 8 , two times ; $4 \times 2=8 ; 8 \times 0=0^{11}$; then $93-80=13$.
43 into 93 goes 1 time; then to get remainder thounht " 2 between 40 and 50 ; 40 between 50 and 90 ; there will be 1 left so remainder $41^{\prime \prime}$. The 1 left came from thinking 2 from 93 for 48 to 50 . Then 50 to $90=40$ and 1 left = 41 .
Tried 2 decided too large. Then 1 for quotient. Then $93-48=44$ said " 3 subtracted by $3=4$ ". Tried 4×40, "too much," then 2×48, "too much, "then 3×48, 'too much." Finally " 8 into 9 goes 1 time'; $33-8-=13$. Then " 4 into 13 goes $3 . " 13-12=i$, so 13 RI.
"4 into 9 goes 2 with 1 left over." Didn't know what to do with the 1. "Could put it over the 3, but that won't help because 8 doesn't go into $4^{1 '}$; gave up. Decided 43 goes into 93 one time. Placed 1 in quotient and 48 below 93 . Then " 8 from 13 is 5.1 Placed 5 below 8 of 48 . Then " 4 goes into 8 (from 8_{83}) 2 times:. Urote 2 by 5 for remainder of 25 . " 48 into 93 is 7" wrote 7 in quotient above 3 of 93. Wrote 93 belav 93. Then " 48 into 9 is 5." Put 5 in quotient above 9 of 93. Then added $93+.93=135$. Said "answer is 186, other answer is 57 ".
Decided that 48 goes into 93 one time ; placed 43 under 93. Could not proceed further.

Decided there is one 48 in 93. Then $93-48=47$. 148 won't go into 47 so put up 01 .
I R2 " 48 goes into 93 one time" and $93-48=45$. Urote 93 Then " 5 from 8 and get $3 ; 4-4=0$ ". !!rote 3 under 45 . Then $5-3=2$. Answer 1 R2. 45 "4 won't go into 9 but will go into 8 two times." $4 \times 2=3$ and $9-8=1$. 14 won't go into 1 so bring doun 3. 4 won't go into 13 butwill go into 12 three times. $4 \times 3=12$ and $13-12=1$.

Divide $43 / \overline{93}$ (continued)

5 '!rote down 4 ? narks. Counted off nines. Came out with
5 'with 3 left over, but ynu can't do anything with theri:' 48 into 93 one time. Then $38-18=45$. $1: 48$ can't 90 into 45 , put 0 un.: Then $48 \times 0=0$ and $45-0=45$. (5 pupils)
1 Added $48+48=36$ so decided there is one 48 in 93. Urote
$24 R 200$
1 above 93 and left this as answer.
$8 \times 3=24$ (counted). !/rote 24 above 93 for que ient. Then $24-93=117$. Placed this be low 93 . Then $3+$ $117=200$. Placed be low 117 . Then $117+200=417$. Then subtract ${ }^{1 i 7}-0=0 ; 1-0=0$ and $4-2=2^{\prime \prime}$.
$1817 \quad 418$ go into 93 one time" ; $93+1=04 ; 1.48$ go into 91 one time' ; subtracted (aside) $43-1=47$; placed 47 under 94 and added for 141 ; added aside $26+96$ for 172. And ':that'll be too much, go 1 time". Placed 43 under 141 and subtracted for $17(8-1=7 ; 4-4=0$; bring down 1).
1R3 Found 2×43 to be 96 . Then $96-93=3$ for remainder.
1 R44 !.Irote 93 marks as she counted. Counted off 48 marks for quotient of 1 . iliscounted remaining marks for R of 44.
1 R55 Decided 48 goes into 93 one time. Then $93-48=55$. " 3 from $3=5$ and 4 from $3=5 "$.
1 RJ5 43 goes into 93 one time; then $93-4 \dot{8}=55$. In from 13 is 5 ; and 4 from 9 is $5^{\prime \prime}$.
$131 / 43$ " 8 goes into 9 one time with 1 left over; 4 goes into
1 R35 $4 \hat{3}$ goes into ? 3 one time ; ? out of 13 is 5 and 4 out
$10 \quad 48$ goes into ! 3 one time. $93-4!=45$. :Hon many 48's in 45? There's ne lin's in 45."
1/48 45 Ey multiplication decided 48 goes into 93 one time. Then $? 3-43=45$. Became confused, said "my answer is 1 and something, 1 don't know." Finally decided answer was "one 43, forty-five."
$110 \quad 11 \times 8=88 ; 93-83=5$; "bring down the $4^{\prime \prime}$ from 48 to make 45, "and it won't go.:" Wrote 0 with 11 to make answer 110.
2 RO3 Took 3 from 48 twice. Then $45+45=30$. "ro back and put my 3 into it and make 93 , would have a remainder of 3 .'
21 R5 $\quad 1 ; 4$ into 9 goes 2. Then $4 \times 2=8$ and $9-8=1$.
" 13 into 13 goes 1. Then $3 \times 1=3$ and $13-8=5^{\prime \prime}$. (2 pupils)
1071 RG 48 into 93 goes 1 time; $93-48=45$; '148 into 45 gons 0 times, subtract and you still have 45 ; if you cen't do that, start adding zeros. ${ }^{1:} 48$ goes into 450 scivi times (after repeated multiplication and incorrect pro.i:?: of 404) ; then $450-404=54$ and 48 into 54 one time with RG.

```
        Divide 48/\overline{33}}\mathrm{ (continued)
    1.45
    48 into 93 one time : 93-48=45. '4,43 won't go into
        45, I fon'i know how to do it. necided answer was ।
    1723R36
    5R10
    21 R4 4 into 3=1;0 and 9=9:2 20:10}=0, so 0910
    21 R55 - 8 into 13 goes 1; 1 < 3 = 8 = 8 and 93- 3- = 13 :
    43 into 13 goes 1; 1 < 3=8; 13 from 8 = 4."
    4 from g = 5). 
    4 from 9 = 5).
        1." 2 < 4 = 6 twice ; ''2 < 3 = 16. Put down 6 and carry
        Irote }93\mathrm{ maris, courtn! Then 93-75=17.
        1 time. l!rote couritn, cif 48 of ther:. 'It will go
    I R35 140 time. I'rote . }93\mathrm{ unicr 93, and stopped.
```



```
        4 gocs into 8 twice, about 1 less." O
        (3 from 13 is 6;4 from 8 is 4).
    No Decided 43 into 93 goes 5 times. Then 5 5 43=24n.
    21 5/48 should have divided 5
        14%uld have divided 5 into 43. Confused, stopped.
        bring down 3;8, two times; 4\times2=8;9-8=1,
        13-8=5."', goes into 13 one time ; 8 < 1=8 ;
        48 into 93 two times; 2\times48=95. Placed 96 below
        93. Subtracted for 3.
        Multiplied 43 by 5 aside, got 24n. Placed 240 under
        93 (4 under 3 ; and 2 under 9). Subtracted for 690
        (bring down 0; 13-4=9 ; 13 marks cted for 690
        crossed out 4;9-2=6); 13 marks on paper and
        48 into 690; first 43=6). Aside in another division
        on fingers from 48 to 69). 21 goes 21 times (counted
        690--1008=5008 (b)). 21 < 40=1008. Then
        9-0=0;6 5008 (bring down 8; 0-0=0;
        9-0=0;6-1=5).. Stopped at this point.
```


Divide 74/6484

Answers

17 goes into 64 nine times." $9 \times 7=63$ and $64-63=$ 1. "Bring down $8 ; 7$ goes into 18 two times, 2×7 re 14 and $18-14=4$, bring down $4 ; 4$ will go into 44 eleven times." Scratched out ? of 92 in quotient and made final answer 931.
8071 R42 After repeated multiplication decided 74 goes into 648 eight times. Then $648-592=56$. " 74 won't oo into 56 so you put up a 0 and bring down $4^{\prime \prime} ; 74$ into 564 seven times ; $7 \times 74=448(7 \times 4=28$ and $7 \times 7=42,+2=$ 44). $564-448=116 ; 74$ into 116 one time remainder 42. Subtracted 74 from 648 and got 574. "If that is the right number, I would put 5 over 3 because that i's the last number used, and 7 would go over the 4 , but: 1 don't know what to do with the $4^{\prime \prime}$ (of 574). Stopped. 130 ; 74 into 130 one time and $130-74=56$; bring down $4 ; 74$ into 564 , seven times and $564-518=46$ for remainder of $46 / 74$.
8 R12404 74 goes into 648 eight times (repeated multiplication) ; $8 \times 74=592$. Wrote 5920 under 6484 and added for remainder of 12404.
8 R36 74 into 648, eight times ; $8 \times 74=592$ and $648-592=$ 36 ("R take away 2 is 6 and 9 from 14 is $3^{\prime \prime}$).
8 R46 74 into 648 eight times ; $8 \times 74=592 ; 648-592=$ 46 (' 2 from 8 is 6 ; 9 from 14 is 5 , so 1 borrow one and that makes that a $4^{\prime \prime}$).
43 R46 Added and subtracted 74's until reached 592. Decided had used four 74's. Hrote 4 in quotient and 592 under 648. Subtracted for 56 (1, brought down 4. Subtracted 74 from 592, got 518. So this meant 74 goes into 504, three times (one less than 4). Finally 564-513=46 for remainder.
81 R490 74 into 648 eight times (used repeated addition). 648-592 = 56 brought down 4. "74 goes into 84 one time" wrote 74 under 564 and $564-74=490$.
8174 into 648 goes 8 (repeated multiplication). "74 goes into 84 one time." Stopped for ari answer of 81.

126 R46

R374 $74 \times 3=222 ; 222 \times 3=666 ; 666 \times 3=5394$. Had multiplied 74 by 3 four times, so 74 goes into 6494 twelve times. $6484-5994=496$. Then $74+74 \% " L i t$ $148+148=296 ; 2.96+143=444$. So 74 goes int:o 496 six times with remainder 46.
$74+74=148 ; 148+148=296 ; 296+296=592$. $592+592=1184 ; 1184+1184=2368 ; 2368+2359,2=$ $4936 ; 4936+4936=9872$; "that's too large;'3x 1!11 use 4936." Counted multiplications (i for $74-3$ for 148's ; 2 for 296's ; 2 for 592's and 1 for $\left\{184{ }^{\prime \prime}\right.$ ').

Divide 74/6484 (continued)

8 R374 ! rote 8 as quotient; placed 4936 under 6484 and added
(cont.) for 11420 . Multiolied 74 by 8 for 93 ($7 \times 4=29,7$ and 2 is 9). !!rote 98 under 11420, subtracted for 11322 : " 74 into that, ten times" and $11322-1134-=522$; "74 goes into that only 3 times': :'rote 296 under 522. Subtracted for remainder of 374.
6 R64 \quad " 74 goes into 648 seven times because 7×4 is $28^{\prime \prime}$. Then $7 \times 74=650$ (thought $28+2^{R}=56$, and $7 \times 7=$ $56,+7=63$). "That's ten too high, so try $748: 6^{11}$ oot 534. Then $584+55$; then $584+64$ which gave 649 . "So 74 goes into 6484 six times." Put 504 under 648, subtracted for 64. '74 can't go into 64 so the answer is 6 with a remainder of 64."
6 R564 After repeated multiplications and suhtractions decided 74 gres into 643 six times. Wrote 6 as quotient and 592 under 648. Subtracted for 56 ; brought down 4. Tried several multiplications, subtractions and additions for $564: 74$. Gave up.

5334 R4G miltipliled 74 by 2,3 , and 5 . 74 aoes into 648, five times ; $648-370=278$. Brounht down $4 ; 74$ into 278 , three times, 2784-222-= 564 ; wrote another 3 in quotient. Then 564-222 $=342$. Wrote 4 in quotient. Then $342-296=46$ remainder.
8 R56 Repeated multiplications and additions. 74 goes into 618, eight times ; 648-5,92 $=56$.
81 R49 "74 cannot go into 4 ; 74 go into 84 once" : 84-74 = 10 , bring down 64 for 6410 ; mark out $0: 74$ into 641 eight times ; 641-592 $=49$.
B R56 74 into 648, eight times ; 640-592 $=56$, brought down 4 ; then 74 into 564 , seven times. Did not write 7 in quotient. Finally $594-518=56$.
5261 R102 Multiplied 74 by 12 , by 24 , by 52 , by 61 . "Put 52 over there (in quotient) because 3843 (74×52) is the closest to 6484 ." Then $6484-3848=2636$. Placed 2734 (incorrect product of 74×61) under 2636 . Then $2636-2734=102$.
1 R1O "74 can't go into 64. I guess l'll see how many times it'll go into 34 , one time 1 think, and $75,76,77,78$... 34 (made 10 marks as counted), so answer is 1 remainder 10."
81849 "74 cannot go into 1 ; 74 go into 84 one time" 84-74 $=10$. '74 cannot go into $1 ; 74$ cannot go into 41 , so 1 . bring down the whole 64." 74 into 641 eight times. $641-592=49$.
Ho $\quad 74 \times 3=282 ; 74 \times 2=148 ; 148+282=430 ; 74 \times 12=$ answer $\quad 883 ; 74 \times 17=1323 ; 74 \times 23=1702 ; 74 \times 33=3482$; $74 \times 41=3034$. Gave up.

B) R102 iultiplied by $4,6,7,4$, and \because. Decided 74 into filo
 borrow 1, then $13-2=16 ; 9-3=5$, nlus 1 is 7) 74 into 764 nine times. $7: 4$ - $566=102$. (11 minus $6=2,6-0=0 ; 7-\epsilon=1)$
$800 \mathrm{R4} 71 \mathrm{into}$ fin?, eight times (by estimate). $8 \times 74=64$? (1!ithout multiplyinc) $64(i)-6.48=00 \%$. bring down 4 :
77_{1} into 4 zero times, put 0 in quotient : $0 n 04 \cdot 0=04$; 74 coes into 4 zero times - another zero in nuotient : 04-4=4 50 ? 4.
87 R26 E.rror in subtractinc $\leqslant 4,3$ - 522. fiot 544 instead of 564 . Then $544-51^{\circ}=26$ instead of 46 .
800074 into 340 , eight tines. $54 \%-592=156(: 2$ from 2 is 6 ; 9 from 5 is 1 ; $6-5=14$). (rossed out 156 . 'Srote 56 below. ' 74 into 56 is 0 , put 0 up ton' : wrote 74 under 56 : 'can't subtract 74 from 56 so tive answer is $0 .{ }^{\prime \prime}$
151lR924 Hade these multiplications and additions. $74 \times 6=444$, added three 741 s for $66 C: 666 \times 4_{3}=2664 ; 2664 \times 3=$ $7292 ; 2254 \times 2=5228$. Urote 15 in quotient. Then $6434-522$? $=1256$. Multinlied 666×2 for 1332. '/rote 11 in quotient, then $125 \%-1332=924$.
8168 R12 7 noes into 64 eigint times ; $64-56=12 ; 7$ goes into 12 one time : 12-7=4:7won't go into 4 so bring down : : 7 go into 4 i: six times. $43-4,2=6$, bring down $4-7$ goes into 64 eight times ; $64-56=12$.
 tried 5, 7 and C . Decided on ?. "'rote 592 under 592 (below $64 \subset 4$) and subtracted for 0 . 'rote quotient as 38.
710 RGges $" 74$ into 64 is $10 "$. 'irote 4.94 under 40.4 of 6484. $\cdots 74$ into 48 is $7 "$ (no reason). Added $6,184+48.4=6968$.
 goes into ? two times' wrote 2 above $?$ of 648. 'rote G:43 under 6l:6, "bring down $4^{4:}$.
7 (0) By repeated addition of 74, to 592, decided 74 goes into i4.3 seven times. Then 64? - 592 $=56$. Bring down 11 : 74 into 554 six times because 518 is between $5 ? 2$ and 444 . Then $564-510=45 ;: 74$ won't on into 46 , therefore 0 , and $0 \times 74=0$. i:o remainder.
87 R 6 G Error in remainder. $564-\ln ?(7 \times 74=17 \times 4$ is 8 and 7×7 is $49^{\prime 4}$).
O6 R120 74 into 649 , eight times and $548-592=56.74$ into 564, six times ; $6 \times 74=444$ and $504-1,44=120$.
761 R10 74 into 648 seven times, then $643-50 C=52$ bring down $4 ; 74$ into 524 , six times. $524-444=90 ; 74$ into 00 noes once: $90-74=10$ ('4 from 0 is 0,8 from 7 is $1^{\prime \prime}$).
052 R46 74 into 640 , eight times : 648-592 $=56.74$ into 564 , five times ; $564-379=124 ; 74$ into 194, two times : $124-118=45$.

Divide $74 / 6433^{4}$ (continued)

870 R46 Eiror in final step. $564-518=$ lin. Miun 7: : man lin. sero times placed n in nי..nt: $-\cdots$..ic and under 46.
 4. 74 into 56 . five times : $564-370=194: 74$ into 194, two times ; $194-148=48$.
$8 \quad 74$ into 648, eight times, 648-592 = 146. Tried 74×3 and 74×2, stopped.
90 R2: 74 into 648 , nine times : $9 \times 74=616$, and $648-646=$ 2, bring down 4 . 74 won't go into 24 : so put 0 in quotient and $24-0=24$.
80 R56 74 into 648 , eight times ; $648-592=56.74$ won't go into 56 so put 0 in quotient: $56-0=56$.
71 R56 74 into 643, seven times; $648-519=130$. \quad i 4 into 130 one time ; $130-74=56$.
"7 wenit go into 6. So ? intu bi goes ?.." (7 $\times 7=49$. $+7=56,57,3 \ldots 63$). iPut 9 over 6, add 1 to 4 (of 74), make it 5, 5 into 8 goes 1 , have 3 left over.' Stopped, did not know what to do with 3. "Could put it over 4 (of 84) but thi.t would make 7 and there are no numberg left to divide by."
97767 into $6 i_{4}$ nine times, $9 \times 74=666$. Placed 666 under 484 of 6484 . Subtracted $5484-666=5813 ; 7$ into 58 goes $7 ; 7 \times 74=518$. !!rote 518 under 318 of 5818 . Subtractes for $5300 ; 7$ into 53 , seven : $7 \times 74=518$; $5300-518=4782$; 7 into 47 goes 6 .
81 R24 74 into 648 , eight times ; $8 \times 74=572(8 \times 4=32$. $\varepsilon \times 7=54,+3=57$) . 648-572 = 76 ; 74 into 76 once, $76-74=2$, bring down 4 .
87 R45 74 into 648, eight times ; $8 \times 74=582(8 \times 4=32$; $8 \times 7=56,+2=58)$. $643-582=56$ (12 from $3=6$, $8-14=5^{\prime \prime}$) bring down 4 ; 74 into 564 , seven times, $7 \times 74=518 ; 564-518=45$.
8674 into 643, eight times: $8 \times 74=602(4 \times 8=32$, $7 \times 6=57,+3=60$). $648-602=16$, bring down 4 : 74 into 464 , six times. !!rote 464 :nder 46%, drew line and stopped.
871 R22 74 into 648 , eight times, $8 \times 74=592: 648-592=56$. Bring down 4 ; 74 into 564 , seven times. $7 \times 74=468$ ($7 \times 4=28$, carry $2,7 \times 7=44,+2=46$). $564-458$ $=96.74$ into 96 , once ; $96-74=22$.
970 R2 74 into 648 , nine times; $9 \times 74=5$ 路 ; $^{2} 648-592=36$, bring down $4 ; 74$ into 564 seven times ; $7 \times 74=518$; $564-518=46$. "'74 won't go in 46 " so put 0 in quotient. Then $0 \times 74=74, "$ wrote 74 under 46 . Said "f $4=2$. "
91 R30 74 into 648 nine times ; $9 \times 74=638(9 \times 4=28$; $9 \times 7=63$). $648-638=10$. bring down $4 ; 74$ into 104 once, $104-74=30$.
9 R818 74 into 6484 nine times, $9 \times 74=666$. Then 6484 $666=818$.

Divide 74/6434 (conl...
i:o Pounded 74 to 70 and 6464 into 6080. "70 wen't go into
 by 100. Decided wouldn't be n because 0,300 is more than Decided it must be less than
6080 . Then 90×65. Stopped.

Divide $15 / 7 \overline{59} \quad$ (Two schools)

Answers

560 Placed 5 aloove 5 of 75 and 6 above 9. Subtracted 75 75 and $90-30=0$. Affixed zero to 56 becausc "ithere
er.in After $75: 15=5$ and $90: 15=6$ for 56 , affixed a 0 because 'ain't nothing more to multiply by to get no more numbers."
56. Flaced 5 above 5 and 6 above 0 of 7590 . After $75 \cdots 75$ said "hiinn down your !) and 15 won't go into 9 so brinn renir $0 ; 6 \times 15=30$, so the ansiver is 56." (9 oupils)
$5459515 \quad$ "15 into 75 five tincs." Placed in quoticnt and by 3 in dividend : "15 noes into 5 ? three times hecause $3 \times 15=45 .^{\prime \prime}$ Put 45 in quotient making $545: 59-45=$ 14. Placed it beside 0 of 7590 . ' 15 can't no into 14, so 15 goes into 140 nine times with 5,15 left over. 0 so Lring down 9 ; 15 wnn't 90 into $\%$ so bring down 90 15 into 30 six times ; $90-00=1$: 15 aces into 0 zero times so 560 . (2 nupils)
$56 \quad 15$ into 75 five times 1.5 into 90 , six times. Vrote 5 above 5 and 6 ahove 0 of 75 n 0 . Fuzzled by vacant space between 5 and 6 but left answer at 5 ,
15 into $75=5$. Subtracted $7590-7500=50$. "There are six 15 's in 99.1
5 !!anted to write 5 atove 5 and 6 aloove 9 of 7590. Decided this was wrong. Tried 15 into 50 and 15 into 759. Left 5 as answer. Confused with short division.
? Irote 5 ahove 5 of 7590 . Then 15 into $90=6$. lloved 5 above 9 and nlaced 6 above 0 , 'because you have only tivo numbers' (in quotient).
$7118 \quad$ I into 7 , seven times ; $7 \times 1=7$ and $75-7-=? 5$. 5 gnes into 5 once ; $05-5=0$. Bring down 9 ; into G once $09-5=4$. bring down $0: 5$ into 40 eiạht. 115 into 75 four times. llow many times can 4 nu into
4 R20 15 into 45 into $15=3 . "$ Put 3 under 5 of 7590 . irought down 9 , wrote by 3 to make 39 under 59 of 750 J . Subtracted 59-39 =2 2.
56 RO 15 into $75=5 ; 15$ into no $=6 . \quad 90-n 0=0$.

"rong Answers--Fractions

$3 / 4+5 / 2=$ \qquad

Answers

$8 / 4=2 \quad 115+3=3$. You don't add the bot tom numbers because 2 will go into 4.: (23 punils)
$8 / 6 \quad 3$ and 5 is 8 ; 4 and 2 is 6 . (ilay or may not be reduced.) (3 in nunils)
e/: $\quad 5+3=0 \cdot 2$ plus 4 is 8. (3 nunils).
$68 \quad 3$ and 5 is $3: 4$ and 2 is 6 .
15/3 $\quad 5$ and 3 is $15 ; 4$ and 2 is $8 . \quad$ (2 pupils)
$7 / 7 \cdot 3+4=7 ; 2+5=7$. (2 punils)
$7 / 6 \quad 3+5$ is $7: 4$ and 2 is 6.
$31 / 8 \quad$ Chose 3 as $\dot{C} .0$. Then $4 \times 3=12$, so $3 / 4=12 / 8$; 5×2 is 10 , so $5 / 2=10 / 8 ; 12 / 8+10 / 9=22 / 8=$
$31 / 8(3 \times \mathcal{E}=21$, with 1 left over).
$06 \quad 5+3=8 ; 4+2=6$. (2 nupils)
2/is Chose 8 as C.D. "8 rones into 2 four times and 4 goes into 5 one time." So $5 / 2$ became $1 / 8$. " 9 anes into 4 , two, times, 2 will go into 3^{\prime} one time,' so $3 / 4$ hecame 1/8. Then $1 / 8+1 / 3=2 / 8$.
$16 / 8=2$ Chose 3 as C.D. Then $3 / 4=6 / 8$ and $5 / 2=10 / 3$, and $6 / 8+10 / 8=16 / 3$.
$14 \quad: 5$ over 2 is 7 ; 3 over 4 is $7: 7+7=14.1:$
2 $3 / 4=3 / 4$ and $5 / 2=5 / 4$. Then $3+5=8$ over 4 for $3 / 4=2$.
2 1/4 Got $13 / 4$ correctly. Cecided, by counting, there are two 4's in 13 with one left over.
$3 / 2 \quad 5 / 2=5 / 4 ; 3 / 4=3 / 4$. Then $5+3=8$ over 4 and $8 / 4=3 / 2$.
$3 \quad 3 / 4=3 / 4 ; 5 / 2=21 / 2$: chose as C.D. For $3 / 4$ said 114 çoes into 8 two times and 3 qoes into 8 two times." So wrote $2 / 2$ for 3/4. Then "' goes into 3 four times, and 1 goes into 8 eight times: so wrote $8 / 4$ for $21 / 2$.
Then divided $4 / \frac{2}{8}$. Added this 2 to 1 from $2 / 2$ of $3 / 4$ for answer of 3 .
$83 / 2$ Irote $5 / 2$ as $20 / 3$ and $3 / 4$ as $6 / 8$, added for $26 / 8$. $26 \div ?=\$ \Omega 2$ wrote as $63 / 2$.
24/4 Chose 4 as C.C. Then for $3 / 4$ said " 4 times 1 equals 4 , and 1 plus 3 is $4^{\prime \prime}$ so $4 / 4$: For $5 / 2$ said ' 2×2 $=4$ and $4 \times 5=20^{\prime \prime}$ so $20 / 4$. Then $4 / 4+20 / 4=24 / 4$.
$41 / 4 \quad$ Got sum of $13 / 4$ correctly. Then 14 into 13 goes 4 with 1 left uver."
$59 \quad$ " 4 and 5 is 9 ; 3 and 2 is 5. Answer would be 95 " but wrote as 59.
\qquad (continued)
.3 1/2 Wrote $3 / 4$ as $3 / 4$ and $5 / 2$ as ? $1 / 2$: then $1 / 2$ as $3 / 4$ ('2 soces into 4 tivo times nlus 1 is $3^{\prime \prime}$). Tieen $3 / 1$, $3 / 4=6 / 4=11 / 2$ and $2+11 / 2=31 / 2$.
fi/2 Chose 2 as C.D. because ' 2 will go into 4 and 2 , equal times. Then $5+3=8$ for $8 / 2$.
$3 / 8+7 / \delta=$ \qquad
Ariswers
II/16 $7+3=11$ and $8+3=16 . \operatorname{Got} 7+3=11$ bccause she remembered $7+4=12$.
10/16 $\quad 3+7=10$ and $8+?=16$. (37 rupils)
2/2 Got $10 / 8$ colrectly. !'ruto as $2 / 2$ beranse ' 2 will yn into 10 and 2 will 10 into 8 ': (2 nupils)
$13 / 8 \quad 1 / i s \cdot 2 / 8-11 / B=13 / 8$. (2 puplls)
$11.15 \quad 8$ and 3 is 11 (counted), 7 and \cap is 15 (counted).
(2 pupils)
$21 / 8 \quad$ Cot $10 / 8$ correctly. ? goes ints 10 one time," wrote 1/B. 'Remainder is $2^{\prime \prime}$ so $21 / 8$.
$26 \quad$ '7 over 8 is 15 ; 3 over $\mathbb{\&}$ is 11 : $15+11=26 . "$
5 (/8 Cot $10 / 3$ correctly, then the numerator is bigger than the denominator so you got to break it down, that'll be $12 / 8=51 / 8$ because 2 goes Into 3 four tilles and $4+1=5 .^{\prime}$ Could not explain the $1 / 8$.
21/8 $3 \times 7=21$ over 8 .
$57 / 8+21 / 2=$ \qquad
Answers
$8 \quad 5+2=7$ and $7+1=3$ and 3 is $C .7$. because 2 and P will go into 8.
$78 / 10$ $5+2=7 ; 7+1=8 ; 8+2=10$. (23 nupils)
Incom- $\quad 7+1=\mathcal{E} ; 8+2=10$. "That's not right." Could not plete proceed further.
$83 / 4 \quad 5+2=7$, thought $1 / 2=4 / 8$. Then " $7+4=11$. " "That would be $13 / 4$; so the answer is 3 3/4."
$52 / 10 \quad 57 / 8=47 / 3 ; 21 / 2=5 / 2$; wrote $47 / 8+5 / 2=52 / 10$, $47+5=52$ and $8+2=10$. (7 puoils)
$31 / 16 \quad$!rote vertically, chose 16 as $C .0$. Then $7 / 8=56 / 16$ because $3 \times 7=56$ and $1 / 2=2 / 16$ because $2 \times 1=2$. Then $56 / 16+2 / 16=5 \% / 16 ; " 16$ in 5 名 goes 3 times. Remainder will be 1.1 So $31 / 16$.

$57 / 8$	1/2 = (continued)
20/5	$3+5=13$ (counted) ; $13+7=20$ (counted). Urinte 20 for numerator ; $2+2=4$ and 1 is 5 . 'rote 5 in denorinator.
$78 / 3$	'rote $57 / 8$ for $57 / 5$ and $21 / 8$ for 2 1/2. Then $5+2$ 7 : and $7 / 8+1 / 3=8 / 8$.
$65 / 8$:Irote vertically : then 5 14/16 for $57 / 8$ and $28 / 16$ for $21 / 2$: then $5+2=7$ and $14+3=26 ; 726 / 16=$ $810 / 16=35 / 8$.
$78 / 5$	Tape became fouled. Explanation was not recorded.
$713 / 8$! Irote vertically $57 / 3$ for $57 / 8$ and $26 / 8$ for 2 1/2. Added for 7 13/8.
$16 / 16$!'rote $14 / 16$ for $7 / 8$ and $8 / 16$ for $1 / 2$. Then $14 / 16+$ $8 / 16=22 / 16=16 / 16$. Innored whole numbers.
$77 / 16$	Urote $14 / 16$ for $7 / 8$ and $8 / 16$ for $1 / 2$; subtracted (counted ringers) and got 7 , so $7 / 16$. Then $5+2=7$.
$713 / 8$	Chose 2 as C.D. "'rote $8 / 8$ for $7 / 8$. (13 into 8 one time and $1+7=8 \cdot 1$) ; 5/8 for $1 / 2$ (${ }^{\prime}$? into 8 four times, and $\left.4+1=5^{\circ}\right): 8 / 8+5 / 8=13 / 8$ and $5+2=7$.
8	Chose 8 as C.D. 1'rote $7 / 8$ for $7 / 8$: and $1 / 8$ for $1 / 2$, then $5+2=7$ and $7 / 8+1 / 8=8 / \varepsilon ; 73 / 8=8$.
$78 / 8$	$" 5+2=7 ; 7+1=8$ and the determiner is $8 "$ so $78 / 8$. (3 pupils)
52/3	I/rote $57 / 8$ as $47 / 8$ and $21 / 2$ as $5 / 2$. Then $47+5=$ 52 and "connion denominator for this would be ?." '!rote 52/8 as answer.
6 8/10	"5 + 2 = 5 ; 7 + $=8$ and $3+2=10.1$
$27 / 20$	Wrote $47 / 3$ for $57 / 3$ and $20 / 8$ for $21 / 2$; then sum $=$ $47 / 20=27 / 20$.
4	$\begin{aligned} & 57 / 8=20(8+5=13 \text { and } 13+7=20): \text { then } 21 / 2= \\ & 5(2+2+1=5) ; \text { so } 20 / 5=4 . \end{aligned}$
$94 / 8$!'rote $7 / 8$ for $7 / 8$ and $4 / 8$ for $1 / 2$; then $7+4=11$ and $11 / 8=14 / 8(11-3=4)$.
7 15/16	Urote $57 / 8$ as $514 / 16$ and $21 / 2$ as $2 / 16$; (multiplied 7 of $7 / 3$ by 2 somultiplied 1 of $1 / 2$ by 2) ; $514 / 16+22 / 16=716 / 16$.
25	: $7+3=15$ and 5 is 20 : 1 over 2 is 3 and 2 more is $5^{\prime}, 20+5=25$.
$85 / 8$	1 !rote $58 / 8$ for $57 / 8$ (8 into 8 one time ; $1+7=8$). Wrote $25 / 8$ for $21 / 2$ (2 into 3 four times ; $4+1=$ 5). $58 / 8=6$ and $2+6=8$, 'bring down $5 / 8^{\prime \prime}$.
7	!'rote $57 / 8$ as $57 / 4$ ("because 2 will go into 8 four times:'). Urote 2 1/2 as 2 1/4 ('because 2 goes into 4 two times'"). Added $5+2=7$ and stomped. Didn't knowr what to do wi th $7 / 4+1 / 4$.
52	" 2 times 5 is $40,+7=47$; 2 times $2=4$, $+1=5$; $47+5=52$.

\qquad
Answers

3/6	$2+1=3$: 2 and 3 will go into 6 so 6 is C.D. (2 pupils)
3/5	$2+1=3$ and $3+2=5 . \quad(31$ nupils)
5/3	$2+3=5$ and $2+1=3$. (2. nupils)
$12 / 6$	Chose 6 for C.D. : 'rote $6 / 6$ for $2 / 3(2 \times 3=6)$ and $2 / 6$ for $1 / 2(2 \times 1=2) ; 6 / 6+2 / 6=3 / 6=$ $12 / 6$.
1/2	'Irote $2 / 6$ for $2 / 3$ and $1 / 6$ for $1 / 2$. Then $2 / 6+1 / 6=$ $3 / 6=1 / 2$.
8/6	"2 (of $1 / 2$) will go in 6 three times ; $3+1=4.1$ Urote 4/6 for 2/3:'3 (of 2/3) will no in two times : $2+2=4.1$!rote $4 / 6$ for $1 / 2$. Then $4 / 5+4 / 6=3 / 6$.
3/1	: leed a number that will no into 3 and 1.1 Chose 1 as denominator. Then $2+1=3$ for numerator.
1/2	$" 2+1=3$ and $3+2=6 "$; then $3 / 6=1 / 2$.
$12 / 6$!/rote $4 / 6$ for $2 / 3$ (3 goes into 6 two times and $2+2$ $=4$). 'Irote $4 / 6$ for $1 / 2$ (2 goes into K three times and $1+3=4$). $\quad 1 / 6+4 / 6=? / 6=12 / 6$.
3/6	Chose 6 as C.D. I!rote $2 / 6$ for $2 / 3$ and $1 / C$ for $1 / 2$. Then $2 / 6+1 / 6=; / 6$.
3/6	'" 3 can't go into 2 and 2 can't no into 3 , so 1 can multiply them rogether (gave 6 for denominator). Then $2+1=3$.
3/6	$2+1=2$ and $3 \times 2=6 . \quad(3$ nupils)
8/6	'1rote $2 / 3$ as $4 / \%$ (three goes into 6 two times, $2 \times 2=4$). Virote $1 / 2$ as $4 / 6$ (2 goes into 6 four times and $4 \times 1=4)$, then $4 / 6+4 / 6=8 / 6$.
Incomplete	$2+1=3$ for numerator. Could not remember how to find C.D.
1/2	I!rote as $2 / 3+1 / 2$. Cancelled 2 into 2 for 1 and 1. Then $1+1=2$ and $3+1=4$ for $2 / 4=1 / 2$.

$3 / 4-1 / 2=$ \qquad
Answers
$2 / 2$ or $1 \quad 3-1=2$ and $4-2=2$. (44 nupils)
2/2 Chose 2 as C.D. "!leed to find number that will no into 4 because the bottom number has to be the same as this (2 of $1 / 2$). "' Then $3-1=2$.
Incouplete !!rote $2 / 4$ for $3 / 4$ ("4 goes into 4 one time and $3-1=2^{\prime \prime}$) and $2 / 4$ for $1 / 2$ ('2 noes into 4 tivo times and $2 \times 1=2^{\prime \prime}$). Couldn't no further.
\qquad (continued)

Incomplete Rewrote vertically, "you have to make 4 and 2 cyen : 2 won't go into 3 evenly, 8 won't go, s won't an into 4 , try 12 ; 3 divided by 12 goes 4 times, 4 divided by 12 goes 3 times; 1 divided by 1 ?, it will go 1 time, 1 goes into 21 time and lleft over. It won't go evenly because there is l left over. You have to try another number.: Stonped.
$0 / 4 \quad$ Chose 4 as C.O. 4 into 4 one time, $1 \times 3=3$. so $3 / 4=3 / 4 ; 2$ goes into 4 three times $3 \times 1=3$ so $1 / 2=3 / 4$; then $3-3=0$. $1 / 2=2 / 4$ and $3 / 4=3 / 4$, then $3+2=5$. inthen you subtract; you don't subtract, you add the opposite.' iltave to make the ? a 13 : have to make 1 a 10.1
$1 / 1 \quad$ "3 subtract 4 is 1^{11} (numerator) ; "l subtract 2 leaves 1 : (denominator).
$0 / 0 \quad 113$ won't no into $1^{\prime i}$ wrote 0 for numciator. 'Is won't no into $2^{\prime \prime}$ wrote 0 for demuminator.
Chose ? as C.D. I rote $3 / 4$ as $12 / 8(3 \times 1=12)$ and $1 / 2$ as $2 / 8(1 \times 2=2)$. Then $12 / 8-2 / 8=10 / 8=$ $12 / 8$.
Chose 8 as C.D. Urote $3 / 4$ as $1 / 8$ ($1: ?$ will go into 4 two times and 2 will go into 3 one time : . Vrote 1/2 as $1 / 3$ ("8 will no into 2 four times, 4 will no into 1 one time ${ }^{\prime}$), $1 / \dot{\delta}-1 / 8=0 / 8$. Hrote $3 / 4$ as $3 / 4$ and $1 / 2$ as $1 / 4$. Then $3 / 4-1 / 4=$ $2 / 4=1 / 2$.
Hist Liner. 8 as C.D. wrote $1 / 8$ for $3 / 4$ (144 gnes into 3 two times and 3 frum 2 is 1"). Urote $3 /$ f for $1 / 2$ ('8 coes into 2 four times and 4 take away 1 is $3^{\prime \prime}$): "that ain't gonna work because you can't take 3 from 1'. Tried C.D. of 16. Sy same process not $1 / 15$ for $3 / 4$ and $7 / 1 \mathrm{~s}$ for $1 / 2$. Still could not subtract 7 from 1 so gave up.
2/4 Chose 1 as C.D. '!rote $3 / 4$ for $3 / 4$ and $1 / 4$ for 1/2. Then $3 / 4-1 / 4=2 / 4$.
2/4 Chose 4 as C.D. Then $3-1=2$.
$0 / 4 \quad$ Chose 4 as C.D. I!rote $4 / 4$ for $3 / 4$ (14 gnes into 4 one time, 1 plus 3 is $4:$). !rote $5 / 4$ for $1 / 2$ (": goes into 4 two times, plus the 1 is $5^{\prime \prime}$). ":Carlt take 5 from 4, so 1 borrow die frum the dulluminator make it 5/4'. Then $5 / 11-5 / 4=0 / 4$.
$\cdot 2$ take away 4 is 2 , 1 take away 3 is $2 . "$ Chose 6 for denominator, $3-1=2$ for numerator. Then ':2 will go into C four times, and 4 will go into 6 with 2 left over."
$4 / 8 \quad \because$ rote $6 / 8$ for $3 / 4$ ($114 \times 2=3$ so $3 \times 2=6 \%$). Urote $2 / 8$ for $1 / 2(1 \times 2=2$ because he multinlied the 3 of $3 / 4$ by 2 be mist wer same number here). Then 6/8$2 / 8=11,3$.

$3 / 4-1 / 2=$
 \qquad (continued)

11	"3 over 4 leaves $1: 1$ from 1/2 leaves 1."
1/2	Chose 4 as C.D. Srote $\overline{4}$ and 4 . 'iPut my 3 here
	minus $1 / 4$, that would be $2 / 4$ or $1 / 2.1$
1/4	':rote $4 / 4$ for 3/4 ('4 goes into 4 one time, $3+1=$
	4'). '!rote $3 / 4$ for 1/2 ("2 will go into 4 two thincs,
	$2+1=3 ') ; 4-3=1$ 'bring down the 4.

Subtract $82 / 5$
43110

Answers

$21 / 10 \quad$!.rote $82 / 5$ as $42 / 5$, then as $84 / 10$. Irote $43 / 10$ as $43 / 10$. Then $84-43=21$ (14 minus $3=1$ and $8-4$ 3^{i} ves 2^{11}).
$41 / 5 \quad \varepsilon-4=4: 3-2=1$ and 5 from 10 is 5 . (12 pupils)
$47 / 2 \quad .4$ from 8 is 4 : can't subtract 5 (of 2/5) from 2 so have to make the 2 a 12 and $12-5=7{ }^{\prime}$; "can't get 10 from 3 so make the 3 a 12." (Thought she had borrowed 1 from 3 of $3 / 10$ to make the 2 of $2 / 5$ into 12 leaving $2 / 10$ which she now made $12 / 10$). liow had $812 / 5-412 / 10$ arranged vertically, then $12-5=$ 7 and $12-10=2$.
$47 / 3 \quad: 4$ subtract 8 leaves $4 ; 3$ subtract 10 leaves 7 (counted fingers) ; 2 subtract 5 leaves 3."
$41 / 2 \quad 8-4=4:{ }^{\prime \prime} 2$ goes into 3 one time, 5 goes into 10 two times.:
$5 \quad$ Chose 20 as C.D. Urote $10 / 2$ for $2 / 5$ (wrote 20 as denominator and $5 \times 2=10$). !rote $30 / 20$ for $3 / 10$ (wrote 30 as denominator and $3 \times 10=30$). Then 4 from 8 is 4 and 10 from 30 is 20 so $420 / 20=5$.

Incomplete 3.4

Incomplete ' 2 over 5 would leave 3 ; 3 over 10 would leave 9 : 4 from 8 would leave 4." Chose 10 as C.D. Urote $\overline{10}$ and $\overline{10}$. "Bring over the 2 and the 3^{\prime} for $2 / 10$ and $3 / 10$; 114 from 8 leaves 4 ; 'you can't subtract 3 from 2 , you have to multinly it someway, I cinn't remember what it is."
2 1/0 : 3 from 2 you cannot take, go over to 9 and regroup a whole 2. That leaves 4 (in place of 2 of 2/5) and that leaves 7 (in place of 8)." Then " 3 from 4 leaves 1; "10 from 5 you cannot take so you go to 7 and regroup : 5, that leaves 10 (in place of 5 of $2 / 5$), and that leaves 6° (in place of 7 renlacing original 8). Then $64 / 10-43 / 10=21 / 0(0-4$ leaves 2, 4-3 leaves 1 , and $10-10$ leaves 0).

Subtrac	$32 / 5$ $43 / 10$$\quad$ (continued)
$40 / 10$	Chose 10 as C.D. !'rote $84 / 10$ for $82 / 5\left(\cdot r_{5}\right.$ goes into 10 two times, $2+2=4^{\prime \prime}$); wrote $44 / 10$ for $43 / 10$ ("10 will go into 10 one time and $1+3=4$). Then $34 / 10-44 / 10=40 / 10 . \quad(\cdots,-4=4,4-4=$ 0 , bring down $10^{\prime \prime}$).
$39 / 10$	1/rote $92 / 5$ as $82 / 10$ and $43 / 10$ as $43 / 10$. llarked out 3 made it 7 ; made $2 / 10$ into $12 / 10$. Then $7-4$ $=3$ and $12 / 10-3 / 10=9 / 10$.
$39 / 5$	10 will not go into 5 so channe 8 to a 7 and 2 (of $2 / 5$) to 12. Then 1 borrow one from 12 making it 11, and making 5 (of $2 / 5$) a $15: 4$; so $711 / 15$ $43 / 10=39 / 5$ (14 from $7=3$; 10 from $15=5 ; 3$ from $11=9 \cdot 1$.
76/40	Irote $80 / 10$ for 8 and $4 / 10$ for $2 / 5$. Subtracted 4 from 80 for $76 / 10$. 'rote 4 as $30 / 20$ and $3 / 10$ as $6 / 20$; subtracted 6 from 8 and got 14 for $14 / 2 n$. Then $76 / 10$ over $14 / 20$. Converted to $304 / 40$ over 28/40. Subtracted $304-28=076$. So answer is $76 / 40$.
$40 / 10$:Irote 4/10 for $2 / 5$ ('5 into 10 twice, $2+2=41$). ! rote $4 / 10$ for $3 / 10$ (10 into 10 once $1+3=4$). Then $8-4=4$ and $4 / 10-4 / 10=0 / 10$.
9/10	Borrowed 1 from 8, made it a 7. Made 2 of $2 / 5$ a 12. Then $12 / 5-3 / 10=9 / 10$.
$39 / 5$	Lorrowed 1 from 8 , made it 7 and 2 of $2 / 5$ into 12. Then $712 / 5-43 / 10=39 / 5(1 / 4$ take away 7 is 3 ; 3 take away 12 is 9 , and 10 take away 5 is $5^{\prime \prime}$).
39/5	-8 take alvay 4 is 4 , you can't take 2 from 3 so you borrow from 4 (the difference number)'. Then ' 12 take away 3 is 9 and 5 take away 10 is 5.
$29 / 5$	Cross out 8 make it a 7 and 2 of $2 / 5$ a 12. Cross out 7 make it a 6 and 5 of $2 / 5$ a 15 . Then $612 / 15$ $43 / 10=29 / 5 . \quad(6-4=2 ; 12-3=9:$
$49 / 5$	from 8 make it a 7 , and 2 (of 2/5) a 3, then 3 take away 3 is 0 ; 5 can't take away 10 ; borrow again, that's a 6' (crossed out 7), made 5 (of $2 / 5$) a 15. Then $12 / 15-3 / 10=9 / 5$ (had previously written $0 / 5$ and now corrected to $9 / 5$).
$29 / 5$	3 from 2 won't go so cancel 8 and make it a 7. Make the 2 (of $2 / 5$) a 12 ; 10 from 5 won't so so cancel the 7 make it a 6 and this 5 (of $2 / 5$) a 15. 'Then $612 / 15-43 / 10=29 / 5$ (4 from 6 is 2,3 from 12 is $9: 10$ goes into 15 once with 5 left). ${ }^{11}$

Incomplete $\quad 5$ from 10 is 5,4 from 8 is 4 , and 2 from . . ." :nh! can't take 8 from 4 or 10 from 5.1 Then " 5 from 10 is 5, 2 from 3 is 1 , have to find a way to make the 4 bigger because you can't take 8 from l.' Stopped.
$311 / 5 \quad: 4$ from 8 is 4,2 into 3 wouldn't go, you liced a proper fraction, borrow from next number over, borrow from here (the $\ddot{0}$) ; that'd tue $7^{\prime \prime}$, than nitt I from S with 2 of $2 / 5$ to make $12 / 5$; then $712 / 5-43 / 10=$ 3 11/5.
$46 / 50 \quad$ Urote $2 / 5$ as $8 / 50$. ("5, will go into 50 ten tiries and 10 from 2 is $8 \cdot$). Vrote $3 / 10$ as $2 / 50$ ("10 will go into 50 five times and 5 from 3 is $2^{\prime \prime}$). Then $8-4=4$ and $B-2=6$ for $46 / 50$.
$39 / 10$
$2 /$ Chose 10 as C.D. !irote $0 / 10$ for $2 / 5$ (5 goes into 10 two times and 2 take away 2 is 0^{\prime}). Urote $2 / 10$ for $3 / 10$ ($1 \cdot 10$ goes into 10 one time, and 1 take away 3 is $2^{\prime \prime}$) , $80 / 10-42 / 10=42 / 10$.
O take away 4 is 4. L.C.D. is $10 ; 5$ go into 10 two times ; $2+2=4$; ten go into 10 one time $; 1+3=$ $4 "$ so wrote $4 / 10$ for $2 / 5$ and $4 / 10$ for $3 / 10$. "You can't subtract 4 from 4 so-you borrow one from 4 (remainder from 3-4), make it a 3. liake 4 (of 4/10 written for $2 / 5$) a 5. Then $5 / 10-1 / 10=1 / 10$. Chose 10 as C.D. Urote $3 / 10$ for $3 / 10$ and $2 / 10$ for $2 / 5$. Borrowed 1 from 3. Made $2 / 10$ into $12 / 10$. Then 7 12/10-4 3/10 $=3 ? / 10$.
"You can't take 10 from 5, so borrow 1 from \mathfrak{i} and add $5 / 5$ to $2 / 5$ ' for $77 / 5$. Then ' 3 from 7 is 4 . Did not proceed further 'because you can't take 10 from 5."
:irote $32 / 5$ as $712 / 5$; "12 take away 3 is 9 ; 5 can't take away 10 , 1 am stuck on that answer.': Stopped.
$71 / 2-41 / 4 *=$ \qquad (Four Schools)

Answers

$33 / 4 \quad$ "2 and 4 will go into $4^{\prime \prime}$ so C.D. $=4$. Said $2 \times 2=$ $4 ; 2 \times 1=2$; (so $1 / 2$ became 2/4). Ndd your 1 (of $1 / 4$) for $3 / 4$. 4 from 7 is 3 .:
$20 / 9 \quad 47$ wholes take away 4 wholes would be 3 wholes 2 won't take away 4, so have to borrow 1 from 7 and make it a $6 ; 6$ talee away 4 is 2 ; the 2 (of $1 / 2$) would turn into a 12 ; 12 take away 4 would be 9 , and 1 take away 1 would be 0.1 Answer $20 / 9$.
$30 / \quad$ "7 take away 4 leaves 3 ; 1 take away 1 leaves $n, "$ couldn't proceed fur ther.
$32 / 4 \quad$ Irote $1 / 2$ as $2 / 4$ and $1 / 4$ as $4 / 4$ ('becausc we are working on fourths'1). Then $72 / 4-44 / 4=32 / 4$.
? $51 \quad$!rote $71 / 2$ as $15 / 2$ and $41 / 4$ as 17/4. Then 1:15 from 17 is 2 ; 2 from 4 is $2^{\prime \prime}$.
$30 / 2 \quad 7-4=3 ; 1$ from $1=0$ (for numerator), 2 from $4=2$ (for denumiratur). (4 punils)
$32 / 8 \quad$ Chose ε as C.D. !rote $1 / 2$ as $2 / 8$ (wrote ? as dennininator then $2 \times 1=2$) : wrote $1 / 4$ as $4 /$ i (irote 6 as denominator : then $4 \times i=4$):7-4=3 and $4-2=2$ for $32 / 8$.
$5 \quad$ '7-4=3;1-1=0•2 from 4 leaves 2 " for $30 / 2$ so just say 5 ; add the 2 and 3.'
" 2 subtract 7 is 5, subtract 1 more is 4 (numerator), 4 subtract 4 is 0 , and 1 more is 1 (denominator).
8 "2 times 7 is 14 , minus 1 is $13^{\prime \prime}$: " 4 times 4 is 16 minus 1 is $15^{\text {i }}$; wrote 13 below $71 / 2$ and 15 below 41/4. Then $13-15=3$ (113-5 is 8 --counted fingers-0 - 1 is $0^{\prime \prime}$). Answer 8.
$31 / \quad$ " 4 from 7 is 3 ; $1 / 4$ and $1 / 2$ will give me?? I can't figure out the bottom digits, for the top 1 friun 1 will give me nothing. So 1 will put the 1 down. Could not proceed further.
133
$31 / 4 \quad$!!rote $1 / 2$ as $3 / 4^{\circ}$ (" 2 goes into 4 one tine, $1+2=$ $\left.3^{\prime \prime}\right)$. Urote $1 / 4$ as $2 / 4$ (14 goes into 4 one time, $1+1=2: 1) . \quad 1: 7-1=3: 3-2=1$; bring dovn 4.:1
5 1/0 "I from 1 you cannot take, so go to 7 and borrow a whole 1 , that leaves $2^{\prime \prime}$ (changed 1 of $1 / 2$ to 2); : 4 from 2 you cannot take, no over here and borrow a whole 2, and that leaves $5, "$ (the 2 of $1 / 2$ became 4). Then $2 / 4-1 / 4=1 / 0$ "that leaves 5 " (from chanọing 7 to 6 and 6 to 5). Ignored whole number 4 in $41 / 4$.

[^0]\qquad

Answers

4/5 "1 from 5 is 4, 3 from 8 is 5:" (2K pupils)
$1 \quad: Y o u$ can't subtract $\&$ (of $5 / 8$) from 5, so make the 5 a $15^{\prime \prime}$; "you can't get 3 (of $1 / 3$) so you have to make the 1 a $10 . "$ Then $15-8=7$ (rounted) and 10-3=7. Answer $7 / 7=1$.
3/2 \quad " 8 take avay 5 leaves $3^{\prime \prime}$ (numerator); "3 take conv 1 leaves 2^{14} (denominator).
C.D. is 24 because $3 \times 8=24$ and $8 \times 3=24$. Hrote 24 and 24 . "Put 1 here and 5 here : it will be 4/24.
Incomplete Chose 24 as C.D. U!rote $1 / 3$ as $9 / 24$ ("3 will go intn 24 cight times; $1+3=9^{\prime \prime}$) ; wrote $5 / 8$ as $8 / 24$ (' 3 will go into 24 three times, $5+3=C^{\prime \prime}$). Decided $\operatorname{l!}$ (of $8 / 24$) is too small." Could not nroceed further.
4/3 First chose 2 as C.D. "2 goes into 8 four times, 2 goes into 3 one time." Changed to 3 as C.D. '!rote 3 as denominator of answer then 5-1=4 for numerator.
9/24 Urote 15/24 for 5/8 and 6/24 for 1/3 (3 can go into 24 six times). Then $15-6=9$.
Incomplete $!/ 1$ rote $2 / 24$ for $5 / 8$ " 8 goes into 24 three times; 5 take away 3 is $2^{\prime \prime}$). Urote $7 / 24$ for $1 / 3$ (' 13 goes into 24 eight times, 3 take away 1 is $7^{\prime \prime}$) ; 'That ain't gonna work because you can't take 7 from 2." Stopped.
Incomplete $!$ rote $2 / 24$ for $5 / 8$ (: 1 ? goes into 24 three times, 3 take avay 5 is $2^{\prime \prime}$) ; wrote $7 / 24$ for $1 / 3$ ('3 anos into 24 eight times, 8 take away 1 is 7"). "Can't multinly 7 from 2.: Stopned.
4/24 Chose 24 as C.D. Then wrote $5 / 24$ for $5 / 8$ and $1 / 24$ for $1 / 3$. Then $5 / 24-1 / 24=4 / 24$. Chose 24 as C.D. Then 'l from 5 is 4 ' for difference of $4 / 24$. Reduced to $2 / 4$ ('because a half of 4 is 2 and 1 just know 4 will go into $24: 1$) ; $2 / 4=1 / 2$. Chose 24 as C.D. Then " 5 take away 1 is 4:1 for 4/24. Chose 28 as C.D. because " 3 times 3 is 20 and 3 times 8 is $2 \mathrm{~B}^{\prime \prime}$. U'rote $5 / 8$ as $15 / 28$ and $1 / 3$ as $3 / 23$. Then $15 / 2 \hat{c}-3 / 28=7 / 2$.
Chose 16 as C.D. !/rote $10 / 16$ for $5 / 8$ and $8 / 16$ for 1/3. Apparently thought of 16 as C.O. for $5 / 8$ and 24 as C.D. for $1 / 3$ yet wrote 16 for both. Then $10 / 16-3 / 16=2 / 16=1 / 8$.
$1 / 8 \quad$!!rote $1 / 3$ as $6 / 8$. To make denominator of $1 / 3$ same as that of $5 / 8$ added 5 to 3 . Then must add 5_{1} to numerator and $1+5=6$. Then $5 / 8-6 / 3=1 / 8$ ($6-5=1$). $!!$ rote $5 / 3$ as $15 / 24$ and $1 / 3$ as 8/24. Then :9 from 15 is $6^{\prime \prime}$ for $6 / 24=1 / 4$.

Subtract 9 2/3*
$27 / 8$ (Two Schools only)

Ansivers
3 ! !rote $2 / 3$ as $16 / 24$ and $7 / 8$ as $21 / 24$. Borrowed 1 from 9. Made $16 / 24$ into $26 / 24$. Then $26 / 24-21 / 24=$ $5 / 24$ and $8-5=3$. (3 pupils)
$42 / 24 \quad$! 4 rote $6 / 24$ for $2 / 3$ (" 3 goes into 24 eight times and 8 take away 2 is 6") ; wrote $4 / 24$ for $7 / 8$ ("3 goes into 24 three times and 3 from 7 is $4^{\prime \prime}$) ; then 6/24 $4 / 24=2 / 24$ and $9-5=4$.
1/8 !'rote 16/24 for 2/3 and 21/24 for 7/3. '1 can't subtract 21 from 16 , so 1 borrow 1 from 9 and make it 8.: Then wrote $24 / 24$ for $16 / 24$. Then $24 / 24-21 / 24=$ $3 / 24=1 / 3$. Ignored whole numbers.
$35 / 24 \quad$ Chose 24 as C.D. '!rote $2 / 24$ for $2 / 3$ and 7/24 for 7/8. Sorrowed 1 from 9 made $2 / 24$ into $12 / 24$. Then 8 $12 / 24-57 / 24=35 / 24$.
$34 / 5 \quad$!rote $22 / 3$ as $\mathcal{E} 11 / 13$ ("take 1 from 9, make it an 6, make 2 a 12 , take 1 from 12 , make 3 a $13^{\prime \prime}$). Then $11-7=4$ and $13-3=5 ; 8-5=3$.
Incomplete 'rote $2 / 3$ as $16 / 24$ and $7 / 8$ as 21/24. "Can't take 16 away from 21 , cross out the 9 , make it an E." Didn't know what to do with borrowed one.
Incomplete Urote $2 / 3$ as $16 / 24$ and $7 / 8$ as $21 / 24$. "I can't take 21 from $16^{\prime \prime}$, wrote $32 / 48$ and $42 / 42$. Gave un.
$40 / 24 \quad$ Urote $2 / 3$ as $10 / 24$ (" 3 goes into 24 eight times and $\left.8+2=10^{\prime \prime}\right)$. Urote $10 / 24$ for $2 / 3$ (:3 into 24 thres times, and $7+3=10^{\prime \prime}!$). $910 / 24-510 / 24=$ $40 / 24$.
$35 / 28 \quad$ Chose 28 as. C.D. because ${ }^{\prime \prime} 3 \times 8=20$ and $3 \times 3=20 .{ }^{11}$ "rote $2 / 3$ as $16 / 28$ and $7 / 8$ as $21 / 28$, horrowed 1 from 9 made it B. Changed $16 / 28$ into $26 / 2$. Then $826 / 20-521 / 20=35 / 23$.
$36 / 24 \quad$!'rote $2 / 3$ as $16 / 24$ and $7 / 8$ as $21 / 24$. 'You can't take $21 / 24$ from $16 / 24$ so you have to cross out the 9, put an 8 ; 2 and ? is 11 ; and 11 and 16 is $27 .{ }^{11}$ Then $827 / 24-521 / 24=36 / 24$.

3
"Cross out 9 make it 8 and 2 (of 2/3) a 12 "; "cross out 3 make it 7 and 3 (of 2/3) a 13.1 Then 7 12/13$57 / 8=25 / 5(7-5=2 ; 12-7=5 ; 13-P=5)$ $=3$.
3/24 i!rote $2 / 3$ as $16 / 24$ and $7 / 8$ as $21 / 24$. ©orrowed 1 from 9 make it 3 ; changed $16 / 24$ into $24 / 24$ (probably thinking $3 / 8$ for 1). Then $24 / 24-21 / 24=3 / 24$. Ignored whole numbers.

* This exercise was included in interviews in last 2 schools only.

Subtract	$92 / 3$
	$57 / 8$

2 4/5 'You can't take a higher fraction from a lower fraction so you have to borrow ; to take a whole out of there (the 9) you need 3 thirds, so you tal:e 2 out of there (the 9); would be $2 / 3$ and $9 / 3+2$ would be $11 / 3$.' So $711 / 3-57 / 8=24 / 5$ (7-5 $=$ $2 ; 11-7=4 ; 8-3=5$) .
$25 / 5$
$25 / 5 \quad$ ' 7 into 2 won't go, so cross out 9 and make it 8 , that's 12 (made 2 of $2 / 3$ into 12) : 7 from 12 is $5^{\prime \prime}$; "8 into 3 won't go so cross out 8 and make it a 7 ; make this 13 (3 of $2 / 3$)." Then $712 / 13-57 / 8=$ $25 / 5$.
$45 / 5$
Incomplete
"Can't take 7 from 2 so you liave th boo row, make $?$ an 3 , and 2 (of $2 / 3$) a 12. Can't take 8 from 3 so you have to borrow, cross out 3 and nut down 7 , make 3 (of 2/3) a 13.1 Then 7 12/13-5 7/8 = 2 5/5 (7-5=2; $12-7=5 ; 13-8=5$).
"و take away 5 is 4 ; 2 take away 7 is 5 ; 3 take away 8 is $5 . "$
Wrote $2 / 3$ as $16 / 24$ and $7 / 8$ as $21 / 24$. 'How if 1 borrow 1 from 9 and put it on that (16 of $16 / 24$) 1 dd get 17, but 1 still couldn't do it."
$2 / 3 \times 3 / 5=$ \qquad
Answers

9/10
1 1/
$60 / 15$

90/15

15

10/9
15
615
2/15
"You multiply across." $3 \times 3=9 ; 5 \times 2=10$. "!!hen you multiply, you divide so you say 2 from 3 is 1 , it will leave $1 .{ }^{\prime \prime}$ Confused, could go no further.
!/rote $10 / 15$ for $2 / 3$ and $9 / 15$ for $3 / 5$. Then 9×10 $=90$ over 15 . Divided 15 into 90 , got 6 and remainder 0 . $1 /$ rote as $60 / 15$. :/rote $10 / 15$ for $2 / 3$ and $9 / 15$ for $3 / 5$. Then $9 \times 10=$ 90 over 15. (27 pupils)
Irote $10 / 15$ for $2 / 3$ and $9 / 15$ for $3 / 5$. Then $9 \times 10=$ 90 over $15 ; 90 / 15=45 / 3=15$. $2 \times 5=10$ and $3 \times 3=9$. (4 pupils) $2 \times 3($ of $2 / 3)=6 ; 3 \times 5($ of $3 / 5$) $=15$. $2 \times 3=6 ; 3 \times 5=15$. (2 pupils) Chose 15 as C.D. Krote $2 / 15$ for $2 / 3$ (" 15 goes into 3 five times, 5 will go into 2 two times"). !irote $1 / 15$ for $3 / 5$ (415 goes into 5 three times, 3 will go into 3 one time' ${ }^{\prime \prime}$). Then with $2 / 15$ above $1 / 15$, " $2 \times 1=2$, answer $2 / 15$."

$\therefore 3 \times 3 \pi$	
$\therefore / 15:$	Answer was accidentally wreset.
(i)	
3/r	$2 \times 3=6$ and $3 \times 5=15$ for $6 / 15$ revuced incorrectly to $3 / 5$.
(4175	!rote $10 / 15$ for $2 / 3$ and $4 / 15$ for 3/5. :ndd 1 and 9 , leave 19 for $19 / 15$; tiat'll he $16,17,1$, $!$, or 1 i//15.'
$05 / 19$	"rote $10 / 15$ for $2 / 3$ and $9 / 15$ for $3 / 5$; wrot: 19 above 15 to multiply : ${ }^{19} \times 5=45$, carry 4 ; $1 \times 5=5,+4=9 ; 9 \times 1=9$ and $1 \times 1=1$, malies that 19.: :!rote 95/19.
10/9	!!rote reciprocal of $3 / 5$ and multinlied $2 / 3 \times 5 / 3=$ 10/9. (2 pupils)
i/15	$2: \vdots=6$ (from $2 / 3$), $3 \times 5=15$ (from 3/5). Rnswer was accidenta!ly correct.
5/5	"Eort 3 and 5 are prime, so 3 and 2 iore is 5." The ancwer is $5 / 5$.
46/1;	Cios: : as C.D. Uroce $7 / 15$ for $2 / 3$ ("3 noes into 15 .ve tines, $5: 2=7^{\prime \prime}$); wrote (./15 for $3 / 5$ ('. 5 goes into 15 thras times, $3+3=$ er). Then $7 / 1 ;+$ 6/15: $\therefore x 7$ is $!6$ (counted $1!, 3,28,34,46$) so answe: is $46 / 15$.
	l!rote $2 / 3$ as $10 / 15$ and $3 / 5$ as $2 / 15$. First thoughic answer is $1 / 15$ by sulatraction, tisen said $1 \cdot 1$ would like to multiply ? by io Lut i know that's wrone. rave un.
100	- $2 \times 5=10$, put down 7 and carry $1 \times 3 \times 3=3$, $+1=10$. Answer 100 .
$6 / 5$	Irote $2 / 3 \times 3 / 5=6 / 5$. " 5 and 2 won't 0,3 and 3 go calw 1 time." Crossed out 3 of $2 / 3$ and made it 1. Then $2 \times 3=6$ and $1 \times 5=5$.
$22 / 5$! !rote $2 / 3$ as $4 / 5$. ("lenominators must be same, add 2 to 3 and get 5. Hust add same to numerator so $2+2=4:$). Then $4 / 5 \times 3 / 5=12 / 5=22 / 5.1$
1/2	$\therefore 2$ goes into 5 with 1 left.: "rote 2 below 3/5. 13 can't go into \vdots ', wrote 1 in numerator and 2 in denominator. l:low 1/2. times something but 1 don: t kncw.:
2/3	$2 / 2 \times 3 / 5=6 / 15$. "To reduce, divide by $3 / 3$; 6 goes into 3 two times : 15 goes into 3 three times so that 11 be $2 / 3$.'

[^1]

```
2 1/2*5 =
```

\qquad

``` (continued)
```

!!rote $21 / 2$ above $6 / 0$ (6 can be chanyed to an improper fraction so it will be ("/G"). "rote $23 / 6$ for $21 / 2$ above $6 / 6$; then $16+3$ (counteci) $=$ 9 bring down your 2.: "'rote $29 / 6$: then counted $1 \%, 7,3,9$, leaves 3.• !'rote answer of 3. $2 / 2 \times 6 / 1=12 / 2=6$; then $5 / 2 \times 6 / 1=30 / 2=15:$ 'I don't know which one is right, 1 just did it twon ways."
!rote $21 / 2 \times 6 / 1$, multiplied $1 / 2 \times 6 / 1=6 / 2$.
"rote this as 3 then' $3+2=5 . "$ (2 oupils) "rote 2 1/2 for $21 / 2$ above $52 / 2$ for 6 . Then $5 \times 2=10$ and $1 / 2 \times 2 / 2=2 / 4$ for $102 / 4=101 / 2$. '1'rote $2 / 4$ for $1 / 2$ and $1 / 6$ for 6 . Then $2 / 4 \times 1 / 6=$ 2/\%4.
! !rote $6 \times 5 / 2$ said "five halves times 6 is 12 and 1? and 5 is 17 , so $17 / 2=$? $1 / 2$.
Arranged work like this. Chose 12 for C.D. ('is is 2×3 and 2 is prime, so that'11 be $2 \times 2=4$ and $4 \times 3=12^{\prime \prime}$). Then ' 6 goes into $16 \quad 12$ 12 six times." $:$ rote $6 / 12$ by the $6 . \quad \cdots \quad . . .$.
You automatically put a one there ${ }^{\prime}$. 36.12 (to left of 6). Then 2 goes into 12 six times and $6 \times 1=5 .: 1$ Irote 6/12 by 2 1/2. $1: 6 \times 6=36$ over 12 and $7 \times 1=2$, so it's qonna be 2 36/12.' !rote $21 / 2$ as $5 / 2$ and 6 as $1 / 6$. Then $5 / 2 \times 1 / 6=$ 5/12. (2 pupils)
!'rote $21 / 2$ above $6 / 1 .: 6+1=7$ and $2 \times 1=2$. l'rote $7 / 2$ then affixed the 2 for 2 7/2.
$1: 2 \times 6=12 ; 6 \times 2=12$, and $6 \times 1=6.1$ I!rote $126 / 12$ then reduced $6 / 1$? to $2 / 3$ ("2 can go into S and 3 can go into $12^{\prime \prime}$).
" 2 into 6 would be 8 and put down 1/2.'
!!rote 2 1/2 above 5 2./2 (iI am going to borrow 1 from 6 and make it 5 and 2 twos' ${ }^{\prime \prime}$). Then $5 \times 2=10$ and $1 \times 2=2$ so $102 / 2=11$.
I/rote 6 below $21 / 2$. " 0 times $1 / 2=0$. There is nothing under $1 / 2$ so multiply by $0,6 \times 2=12.1$ Answer 120.
IIrote $21 / 2$ as $5 / 2$ and 6 as $12 / 2$. Then $5 / 2 \times 12 / 2$ $=60 / 2$.
Urote $21 / 2$ as $5 / 2$ and 6 as $6 / 1$. Then $5 / 2 \times 6 / 1=$ 30/2 reduced to $15 / 2$ ("2 goes into 30 fifteen times and the denominator is $2^{\prime \prime}{ }^{\prime \prime}$. $" 2 \times 6=12 ; 1 / 2 \times 1 / 2=1 / 4 "$ (since there was nothing besido the G he mentally affixed $1 / 2$), makim? the exercise $21 / 2 \times 1 / 2$.

$$
f-16
$$

\qquad (continued)
$530 / 150$
$53 / 2$
22/3
$113 / 4$
$15 / 40$
$52 / 4$
$56 / 1$
$53 / 4$
G $2 / 4$
$53 / 4$
$43 / 3$
$53 / 4$
$267 / 8$

16 1/2

1 rote $51 / 2$ above $3 / 4$. Then $1 / 2=6 / 12$ and $3 / 1_{5}=$ 9/12. $4+3=15$ and $15 \times 12=$? Then $15 \times: \therefore$ wrote i2. $i 5 \times 2=10$, write 0 carry $1 ; 1 \times 2=2$, $15+1=3$ " for 30 (numerator). "Then 1 write a $\frac{15}{0}$ (in denominator) and 1×5 is $5,1 \times 1$ is 1.1 !'rote 150 in denominator and brought down 5 for $530 / 150$.
!rote $52 / 4$ for $51 / 2$ above $3 / 4$. Then $2 \times 3=6$ over 4. Affixed 5 for $56 / 4=53 / 2$. Wrote $11 / 2$ for $51 / 2$ and reciprocal of $3 / 4$. Then $11 / 2 \times 4 / 3=22 / 3$ (cancelled 2 into 4). $: 5 \times 2=10,+1=11$, so $113 / 4.11$ Then $4 \times 11=$ $44,+3=47$, or $47 / 4=113 / 4$. Urote $5 / 10$ for $1 / 2$. Then $5 / 10 \times 3 / 4=15 / 40$. Innor: whole number 5 .
whole number 5 . $1 / 2$ and $3 / 4$ for $3 / 4$. Then $2 \times 3=6$ for $6 / 4=12 / 4$; "that' 11 equal $52 / 4$."
l/rote $2 / 4$ for $1 / 2$ and $3 / 4$ for $3 / 4$. Then $2 \times 3=6$ for $6 / 4$; bring over your 5."
Chose 4 a's C.D. $1 /$ rote $1 / 2$ as $1 / 4$ and $3 / 4$ as $3 / 4$. " 3×1 is 3.: ? !rote $3 / 4$ and affixed 5. "rote $2 / 4$ for $1 / 2$ and $3 / 4$ for $3 / 4 ; " 3 \times 2=6 . "$ Urote $6 / 4$, affixed 5 for $56 / 4=62 / 4$. (2 pupils) "First it would be 5 , then 1×3 is 3 and C.D. is 4 so 5 3/4.:1 (2 pupils)
Urote $51 / 2$ above $3 / 4$. "Have to find the denominator, so you borrow 1 from 5, make that a 4 , add it on to the $3 / 4$, makes that $13 / 4$ and 1 times 4 is 4.1 Then $1 / 2 \times 3 / 4=3 / 8$ ($1 / 3 \times 1=3$ and $4 \times 2=81)$. "This is 4 (wrote as denominator of fraction in answer), and this is 5 : (wrote as whole number of answer), " 1×3 is $3^{\prime \prime}$ so $53 / 4$. !!rote $51 / 2$ as $11 / 2$ and $3 / 4$ as $3 / 4$. Then $11 / 2 \times$ $3 / 4=33 / 0$. Counted from 8 to 33 on fingers for 26 then from 26 to 33 and got "'7 left'" so $267 / 3$ answer. Chose 4 as C.D. Urote $152 / 4 \times 3 / 4=156 / 4=$ $162 / 4=161 / 2(2 / 4 \times 3 / 4=6 / 4$ and $3 \times 5=15$ for $156 / 4$).
\qquad
Answers
3/10 $\quad 13$ into 9 goes 3 times, brina over the 10.1 (6) nupils)

27/10 '? hen you divide you multinly, that would give you $27 / 10^{11}(3 \times 9=27)$.
3/0 "10 divided by 10 is $0 ; 9$ divided by 3 is 3."
$3 / 20$ Wrote $18 / 20$ for $9 / 10$ and $6 / 20$ for $3 / 10$. Then $18 / 20 \div 6 / 20=3 / 20$ (" 6 into 18 goes 3 bring down 20'1).
$44 / 9 \quad$!'rote vertically $1 / 9$ for $9 / 10$ and $31 / 3$ for $3 / 10$. Then $3+1=4$ and $1 / 9+3 / 9=4 / 9$.
3/0. \quad " 9 into 3 leaves 3 (numerator), 10 into 10 leaves $0^{\prime \prime}$ (denominator). (3 pupils)
6/10
$2 / / 10$
24 "g over 10 go 1 time" (l left over): wrote 1 " 3 over 10 goes 3 times with 1 left over." 13 :Irote 1 and 3 under the ones as here. Then added $1+1=2$ and $1+3=4$ for 24 .
6 " 6 divided by $3=6$ and 10 divided by $10=1, \cdot$ so $6 / 1=6$.
3 into $?$ is 3 and 10 into 10 is 1 . First wrote answer as $3 / 1$ then revrote as $1 / 3$.
$32 / 3$ Divided 3 into 3 this way $3 / 9$ got 3 R2. ! !rote as $32 / 3$.
Incomulate $" 9$ won't go into $3 ; 3$ goes into 9 three times and 3 is prime and $9 \times 3=27$, that ain't gonna work.:' riave up.
12/20 ! !rate $9 / 10$ above $3 / 10$ "that'll be 12/10." Uncertain what to do next. !/rote 2 under $12 / 10$. Then wrote $1.2 / 10 \times 2 / 1=12 / 10 \times 1 / 2=12 / 20$.
$0 / 10 \quad$ "C.D. would be 10 , and 9 can't go into 3 so answer is 0/10.: (2 pupils)
6/0 " 9 divided by 3 is 6 , and 10 divided by 10 is $0 .{ }^{10}$ (3 pupils)
$36 / 20$
" 3×9 is 36 , and 10 times 10 is $20 . "$
1/3

30
'Turn it over" (9/10). !!rote $10 / 9 \times 3 / 10$. Then cancelled 3 into 9 and 10 into 10 . Product $1 / 3$. " 9 divided by 3 is 3 and 10 divided by 10 is $0 . "$
$153 / 4 \div 3 / 4=$ \qquad

Answers

$150 / 4$
$153 / 4$
$151 / 4$
16
$72 / 3$
21/4
20/1
$4 / 189$

15
$150 / 0$ $151 / 1$
$161 / 2$

15
12
$1 / 4$
$1 / 4$
$159 / 4$
21 RI
15
$51 / 4$
16
$7 / 4$
20
'. 3 divided by 3 is r and C.D. is 4 so it would be $150 / 4 .{ }^{\prime \prime}$ (2 pupils)
'Bring over $15 ; 4$ divided by $4=4$ and $3 \div 3=3$. Answer $153 / 4.1$
$1 " 3 \div 3=1$, bring over 15, answer is 15 1/4." (10 pupils)
" $3 / 4 \div 3 / 4=1$, bring over 15 and $15+1=16 "$ or : $3 \dot{i} 3=1 ; 4 \div 4=1 ; 151 / 1=16.1$ (10 pupils) Hrote $153 / 4$ as $23 / 4$, and reciprocal or $3 / 4$. Tluel $23 / 4 \times 4 / 3=23 / 3$ (cancelled) $=72 / 3$. ! rote $153 / 4$ as $63 / 4$. Then $63 / 4 ; 3 / 4=21 / 4$. (3 pupils) $\because!1$ ote $153 / 4$ as $60 / 4$. Then $60 / 4+3 / 4-60 / 4 \times 1 / 3$ $=20 / 1$ (cancelled). (2 pupils) Wrote $153 / 4$ as $63 / 1$ (115 times 4 is $60,+3=63$, you put whole numbers over $1{ }^{11) \text {. Then } 63 / 1 \div 3 / 4=}$ $1 / 63 \times 4 / 3=4 / 133$.
!!rote $153 / 4 \times 4 / 3$ (cancelled) $=151 / 1=15$.
$" 3$ into $3=0 ; 4$ into $4=0$," wrute 150%. "'3 goes into 3 one time, 4 gocs into 4 one time" bring over 15 . (5 pupils)
$" 3 / 4+3 / 4=6 / 4^{\prime \prime}$ brinn over 15 for $156 / 4=$ $162 / 4=161 / 2$.
"3/4 from 3/4 is 0 , put down 15." (2 nupils)
" 3 divided by 3 is 1 bring over 4 " for $3 / 4 ; 3 / 4$ of 15 is $12 .{ }^{\prime \prime}$ "Numerator will stay the same if same number is on bottom, and then 3 will go into 3 one time" so $1 / 4$. '"3 go into 3 one time; 4 can't go into 4 , so you regroup a whole 4 from 15 , that leaves 14." Then $143 / 4 \div 3 / 4=1 / 4$ (the 4 of $143 / 4$ becomes 8 and 4 from 8- leaves 4, answer 1/4').
"Bring over 15; $3 \times 3=9$; bring over 4." Urote $153 / 4$ as $64(\cdot 4 \times 5=24 ; 4 \times 10=40$; $24+40=64^{\prime \prime}$). Divided 64 by 3 got 21 R1. ''Keep 15 ; $3 / 4$ will go into $3 / 4$ but it won't equal anything, so answer is 15." : $3 / 4$ into $3 / 4$ goes 1 time, that gives $1 / 4 ; 3 / 4$ into 15 ?? divide 3 in 15, that's 5." Answer $51 / 4$. Hrote $153 / 4$ as $63 / 4$; then ' 3 goes into 60 fifteen times, and 3 goes into 3 one time, so answer is $16 .{ }^{\prime \prime}$ Urote $63 / 4$ for $153 / 4$. Then $63 \div 3=21$ and $21 \div$ $3=7$. Used C.D. of 4 for $7 / 4$. U!rote $153 / 4$ as $60 / 4$; then $60 / 4 \div 3 / 4=60 / 4 \times 4 / 3=$ 20 (cancelled) (in multiplying 15×4 said $110 \times 4=40,11 \times 4=44 ; 12 \times 4=48: 13 \times 4=52$; $\left.14 \times 4=56 ; 15 \times 4=60^{\prime \prime}\right)$.
\qquad (continued)

20/4	Irote $153 / 4$ as 60/4'so it's 60/4 $\div 3 / 4 \cdot$? into 0
	noes 20 times so answer is 20/4. (2 punils)
11 R13	irrote 63/4 for 15 3/4. Then 63/4 3/4 18a/if.
	11 R13. ($1 / 4$ won't so into 63 so $63 \times 3-1 \% 3$
	4×4 - $40 . \cdots$ Divirlod ir. incu 130 answer 11 Rl 3 .
n/1	\because rote $63 / 4$ for $153 / 4$. Then $63 / 4 \div 3 / 4=0 / 1$. ("3 won't go into 63'"), wrote 0 for numerator, ' 4
	into 4 goes $1^{\prime \prime}$ wrote 1 for denominator.
151	"15 divided into 15 is 15 ; 3/4 divided by $3 / 4$ is
	1 tilie." !'rote 151.
$33 / 4$	'rote $45 / 4$ for $153 / 4$. Then $45 / 4 \div 3 / 4=15 / 4=$
	$33 / 4$.
$53 / 4$	"3 (of second 3/4) into 15 is 5 and bring down 3/4."
() 1/4	"How nany 3's in 3 : there's 1 three in 3 : it's
	the saric number so it stays $4^{\prime \prime}$ ivrote $1 / 4$. Then " 0 divided by 15 is $0^{: 1}$ wrote $01 / 4$

$69 / 10 \div 3=$ \qquad
Ansivers
$29 / 10$
$23 / 2$
$23 / 3$
6 27/30
$63 / 10$
$207 / 10$
2/30

Incomplete
6 3/10
$27 / 10$
:6 into 3 will go 2 ; and $9 / 10$," or "'5 whole $\vdots 3$ whole is 2. You ain't gnt nothing to divide $9 / 10$ by so put down your $9 / 10.1$ (25 pupils)
First said 'can't do it because there is no fraction behind 3." Interviewer made exercise $69 / 1) \div 33 / 5$. Then "'3 goes into ? three : 5 goes into 10 two, 3 goes into 6 two: ; answer 2 3/2.
" 3 go into a three times ; 3 go into 10 three times and 1 left ; 3 goes into 6 two times." $" 3 \times 9=27 ; 3 \times 10=30$, bring over 6." lirote $69 / 10 \div 3 / 1 ; " 3$ goes into 9 three times ; ! goes into 10 ten times, bring over the 6." (3 nupils)
'irote $69 / 10 \times 3 / 1=207 / 10=207 / 10$.
Irote $627 / 30$ for $69 / 10$ and $10 / 30$ for 3 . Then $627 / 30 \div 10 / 30=2 / 30$ R $7 / 30$. "I got messed un.' Stopped.
Urote aside $60 \times 9=540$. Then $54 n / 10 \div 3 / 1=$?
Could not finish.
Rewrote as $69 / 10 \div 3 / 10$ (because common denominator is 10) '口g divided by 3 is 3 , nut over C.D. of 10 , bring" 6 over."
'rote $69 / 10 \div 3 / 1=207 / 10=27 / 10$.
\qquad (continued)
$1 / 207 \quad$ 'rote $69 / 1(10 \times 6=60,+?=6 ?$, put it wion ; "because it is a whole number"). Then ك, /i $\vdots \mathrm{s/l}$; "that will he $1 / 6$ n $\times 1 / 3=1 / 207$."
:rote $69 / 10 \div 3=6 \times / 10 \times 3 / 1=207 / 10$.
23
$69 / 30$
$2 R 9$
$39 / 10$
$1 ?$ R!

1/0
$21 / 1$
23

Chose 30 as C.D. "rote 27/30 for $9 / 10$ and $10 / 30$ for 3 ; "put a 1 under the 6 automatically" : ":27 is 3 to 3 rd power and 30 is $2 \times 3 \times 5$; so it's gonna Le 3 threes is ?; and 2 times 3 is 6 ; 6×9 is 27 ; and 27×5 is $135: 6$ won't no into 1 so answer is $135 / 30$.:
'You break the 3 down and make it $23 / 3^{\prime \prime}$: wrote 27/30 for $\because / 10$ and $30 / 30$ for 3/3. "Sor rov 1 from 9 (of $69 / 10$), made $27 / 30$ into $37 / 30$: then 30 into $37=17 / 30$. Then made 2 of $23 / 3$ into 3 because of 1 of $17 / 30$. Then ' 3 goes into 5 (left from borrowing 1 from ${ }^{6}$) one time with $2 / 30$ left over." " 3 goes into 6 troo times ; 3 does not go into $9 / 10$ so the answer would be 2.' I/rote $9 / 10 \times 1 / 3=9 / 30$; hrounht over 6 . 'rote $6 \% / 10$ for $69 / 10$ and $30 / 10$ for 3 to get a C.n. 30 into $\uparrow 9=2$ R. 9. ! rote $69 / 10 \div 30 / 10 \cdot 6$ into 30 would go 3 times with $9 / 10$ left over. ! rote $53 / 10$ for $69 / 10$ and $3 / 1$ for 3. Like this: $69 \quad 3$ Then 3×63 for $193.193 / 10=19$ R?. $10 \quad 1 \quad$ And 10×1 for 10 . !'rote $69 / 10 \div 1 / 3$, "1 into 6 goes 1 time : 3 won't on into 10 , so it's 0 ; answer $1 / 0$." $!\frac{0}{6} 3$ is 2 ; now $9 / 10 \div 3 / 10: 9$ divided by n is 1 ; 10 divided by 10 is 1 ; answer 2 1/1.:' Urote $69 / 10 \times 1 / 3=23$ (cancelled 3 into 69$)$.
$7 / 8 \div 2 / 3=$ \qquad

Answers

$3 / 2$
$14 / 24$

1/24
$3 \underset{24}{1 / ?}$
':2 goes into 7 three times, you'll have a remainder, 3 goes into 0 two times, but you still have a remainder. ${ }^{\text {. }}$! $/$ rote $3 / 2$ as answer. $\because 7 \times 2=14 ; 8 \times 3=24$, that's not right, vou don't multiply the bottom number," could go no further. ! 'rote $21 / 24$ for $7 / 8$ and $16 / 24$ for $2 / 3$. "!ow divide 16 into 21 goes 1 time." Answer $1 / 24$. f.hose $2435 C$.D. ! !rote $7 / 24$ for $7 / 8$ and $2 / 24$ for $2 / 3$. Then $7 / 24 \div 2 / 24=\frac{31 / 24}{24}(7 \div 2=31 / 24)$

\qquad (continued)
? ? goes into 7 three times RI ; 3 no into ?. Lwn times R2.' Then wrote $2 / 2 \quad 1 / 3=3 / 5$. (The 1 of $1 / 3$ is remainder of $7 \div 2$: the 3 of $1 / 3$ is of $7 \div 2+R$ of $3 \div 3): 2 / 2+1 / 3=3 / 5$. ' 3 divided hy 3 , twn times 2 divided by 7 equals 3 with !l." 'Srote

2	$\frac{3}{7}$
$3 / 8$	$2 / 7$
$\frac{6}{2}$	$\frac{6}{1}$

Made 1/2 from remainders.
'Irote $3 / 24$ for $7 / 3$ ($\cdot \Gamma$ noes into 2.4 threc tillics, and 3 goes into 7 three times and 1 left over"). "!rote $4 / 24$ for $2 / 3$ (" 3 goes linto 24 oight. times and $3 \div 2=$ $4^{\prime \prime}$). Then $3 / 24 \div 4 / 24=11 / 24$ ("3 gans intu $1 /$ whe time with $1 / 24$ left over."
! rote $21 / 24$ for $7 / 8$ and $16 / 24$ for 2/3. Added for 37/2\%. Placed 2 undor 37/21. Then wrote $37 / 24 \times$ $1 / 2=37 / 48$.
Urote $21 / 24$ for $7 / 8$ and $16 / 24$ for $2 / 3$; then $1 \eta 1$ divided by 16 is 0 because 21 doesn't go into $16 .{ }^{\prime \prime}$ First wrote $21 / 24$ for $7 /$? and $16 / 24$ fur $2 / 3$. Decided this was wrong. Then "7 divided by 2 is 3 ; 3×2 is 6 and $7-6$ is $1 ; 3$ go into P two times; I put the 2 un there (for numerator) and leave the 3.'

Chose $2!$ as C.D. "Ering down your 2 and your 7"; wrote $7 / 24$ for $7 / 8$ and $2 / 24$ for $2 / 3$; 2 goes into 7 three times and left over ; it'll be 1 and 3/24.: 'Can't divide 2 by 7.1 " $/$ rote $8 / 7 \div 2 / 3$; "2 divided by 8 is $4 ; 3 \times 7=21 .{ }^{\prime \prime}$ Chose 2.4 as C.D. " 2 goes into 7 three times, answer 3/24.:"
' ${ }^{2}$ g goes into 7 three times with one left over." "These are the kind I don't understand, when one denominator is even and one is odd." $\cdot 12 \times 7=14$ and $3 \times i$ is 24 . 17 can't go into 2 and 24 is C.0. so answer is 0/24.: Urote $3 / 7 \times 2 / 3=16 / 21$. Chose 24 as C.D. " 7 divided by 2 goes 3 times with 1 left over." Irote $7 / 8 \quad 2 / 3$ cancelled 2 into ? then $7 \times 1=7$ and $4 \times 3=12$. " 2 won't go into 7 but it will go into 6 " ($2,4,6$). !'rote 3 for numerator ; "3 won't go into 8 but it will go into 9 three times:" $(3,6,9)$. Urote 3 for denominator.
\qquad (continued)

5 1/24 !!rote 21/24 for 7/8 and 16,24 for $2 / 3: 16$:ill ;n into 21 one time with 5 left over, sn answer i : 5 1/24."
305 R2

$$
\text { :o } 7 \text { and }
$$ 205 Divided 305 2 int

$$
\text { nto } 7
$$ 3 into 8 206 R2 2/7

$3 / 30$
Answer
305
R2
$\frac{6}{1}$
$\frac{6}{2}$
0
10
$\frac{0}{2.0}$
10 $\frac{18}{2}$

Added 5 to 3 and 5 to 2 of $2 / 3$ to make $7 / 8$. Then $7 / 8 \div 7 / 3 ; 7 \div 7=1 ; 8 \div 8=1$ and $1 / 1=1$. !!rote anain $7 / 8 \div 2 / 3$ "the 6 into 2 is $4 . " \mathrm{~V}$ rote 4 above cancelled 2 and 2 below cancelled 8 "and this is once ${ }^{\prime \prime}$ crossed out 2 below Q and wrote 1. Then $7 \times 4=23$ and $1 \times 3=3$ for $28 / 3=91 / 3$. !'rote $21 / 24$ for $7 / 8$ and $16 / 24$ for $2 / 3$. Then $21 \div 16=1085$

$$
\begin{array}{r}
16 / \frac{10}{21} \\
. \frac{16}{5} \\
-\frac{0}{5}
\end{array}
$$

APPEHDIX C

All :'rong finswers-Cómparison Exercises Reasons for Choices

Uhich is larger: $2 / 3 \times 5 \quad$ or $1 \times 5 ?$
11×5 is 5 and $3 \times 5=15$. If 1 make it out a fraction it will
be 2×15 which is greater than 5."
" $1 \times 5=5 ; 2 / 3 \times 5=52 / 3$ which is greater than 5." (2 pupili:)
" $1 \times 5=5$ and that is less than $2 / 3 \times 5$ "
" $2 / 3 \times 5$ has chico inmilers while 5×1 has only two numbers."

"r $\times 2=10$, and bring down the $0 ; 5 \times 3=15$; that's 150, and
$5 \times 1=5.1$
" $2 / 3 \times 5 / 1=2 / 3 \times 1 / 5=2 / 15$ and $2 / 15$ is greater than 5.11
" 2×5 is 10 , and you get $10 / 3$ which is greater than 5.11
$" 2 / 3 \times 5=17(5 \times 3=15,+2=17)$, which is greater than
1×5.1
$15 \times 2=10$ and $5 \times 3=15$ which is greater than 1×5.1 (3 puri:)
" $52 / 3$ is greater than 5."
" $2 / 3 \times 5=10 / 3$ which is greater than 1×5.1 (4 pupils)
" 5×1 is 5 and $5 \times 2 / 3$ would be more." (4 pupils)
" $2 / 3 \times 5$ would be $10 / 15$ and that would be larger."
"That's 15 there $(2 / 3 \times 5)$, and that just be more."
" $2 / 3 \times 5 / 1=15$, or something."
"Just a guess."
" $2 / 3$ is greater than 1.1 (2 pupils)
"l $\times 5$ is 5 and $2 / 3 \times 5$ will be a mixed number:"
" $2 \times 3=6$, and $5 \times 6=30$, and 1×5 is only 5.1
$" 2 / 3 \times 5=25 ; 2 \times 5$ and 3×5; and 1×5 is only 5."
"2/3 is greater than 5."
"I just felt like picking that one."

Which is larger: $\quad 3 / 2 \times 6$ or $1 \times 6 ?$
"3 don't go into 2.11
"I is greater than 3/2." (7 pupils)
"3/2 is greater than 1." (2 pupils)
" $6 \times 1=6$ and $3 / 2 \times 6=18 / 12.1$
" 6 is greater than $3 / 2 \times 6$."
" 1×6 gives you a whole number."
"l is a whole and $3 / 2$ isn't."
"I is not a fraction."
"6 is greater than 6 3/2."
"1 $\times 6$ is 6 and $3 / 2 \times 6=18 / 2$ and $18 / 2$ is greater than 6.1
!/hich is larger: _ $3 / 2 \times 6$ or $1 \times 6 ?$ (co:tinund)
"3/2 is a part of 1.1:
"I is $\frac{1}{1}$ is a whole and $3 / 2$ is part of a whole."
llo reason given for wrong choice.

Which is larger:_ $17 \div 5 / 8$ or _17:1?
$115 \times 17=85$ and $85+8=1$; goes into 8 one; 8 qoes into 5 no times, then 17 is larger' (10 is less than 17).
"Just a guess."
ilo reason given for wrong choice.
"5/8 is not a whole number." (2 pupils.)
$" 17 \div 1=17 ; 17 \div 5 / 8$ goes $32 / 8$."
"You have to take 5 into 17 and 8 into 17 and you only take that (17:1) one time."
'I don't know how 1 got it."
"I is greater than 5/8." (9 pupils)
" $5 / 8$ is less than 1.1 (2 pupils)
"17 + 1 would be 17 and 1 think 17 wouid be larger than 5/8 divided by 17.':
"That's a whole and that's just 5/8."
"17:1 $=17,17 \div 5 / 8$ is less than 17.1 (2 pupils)
" 1 is a wholc numiser and $5 / 8$ docsn't equial a whole number," (3 pupils)
$" 1=17=17$, and $17 \div 5 / 8$ is less than 17.1
" $5 / 8$ is not as large as $1 . "$
"This is 1 and this is 5/8."
"17 $-5 / 8=16.1$
Didn't know a reason.
"1 is a whole and $5 / 8$ is a fraction." (2 pupils)
"If you go one time you still have 17."
" $5 / 8$ is not 1 yet; it is $3 / 8$ less."

Which is larger:_17 $\quad 17$ or 17
" $5 / 2$ is greater than 1." (9 pupils)
"Just a guess."
" $5 / 2$ is haif of a number."
" $5 / 2$ would be $21 / 2$ and $21 / 2$ is greater than 1." (4 pupils)
" $5 / 2$ is a whole with 1 left over, that (1) is a vhole with none left over."
'I/Then you work it out, you get 17×2 which is greater than 17."
"Divide $21 / 2$ in 17 and get 6 and something so $5 / 2$ because you are dividing by a larger number."
" $5 / 2$ might go into 17 more than 17 .times. $"$
" 2 gocs into 5 and $1 / 2$ so that'll be $21 / 2$ compared to 1.1
!thich is larger: _ $17 \div 5 / 2$ or _ 17 i 1 ?
'N!umerator is greater than denominator in $5 / 2=21 / 2$ which is greater than $1 .{ }^{1:}$
"17 $\dot{\text { i }} 5 / 2$ you come out with a mixed number."
"17 - $5 / 2$ would be more after you times it."
" $5 / 2$ is less than 1 and the lowest would be larger."
"In 17 ; $5 / 2$ you have more to multiply by, that is, $17 \times 2 / 5$."
'It would be a fraction and probably would come out a little larger, because with this (17 : 1) you have to add a bunch of decimals and you would come out with decimals."
"l is greater than $5 / 2$ so when you divide it will be larger." "You take less out when you divide than when you take one."
" $2 / 2=1$, this is $3 / 2$ more, so $17 \div 5 / 2$ is more than $17 \div 1.1$

1! hich is larger: $3 ? / 10 \div 7 / 8$ or $39 / 10+1$?
"You need a C.D. of 40 on left: $39 / 10+7 / 3=316 / 40$ (9 of $9 / 10$ +7 of $7 / 8$) and $316 / 40$ is greater than $39 / 10.1$
" $7 / 8$ is greater than 1.1 (8 pupils)
"I just think that it is larger."
"3 is a whole and you have $9 / 10$ of a half."
Reason not given for wrong choice.
Pransun iul ieconclod-tanc fouled.
"'If you got a C.D. The left side would be larger."
" $39 / 10+1$ is just like $49 / 10 ; 39 / 10+7 / 8$ is like you add 7 on 9 and 8 on 10 which is greater than $49 / 10 ; "$
" $39 / 10+7 / 8$ would be $16 / 80$ and $39 / 10+8$ voviti bee 4.'
$1139 / 10+7 / 8=316 / 13$ and $39 / 10+1=49 / 16$ gund $316 / 18$ is greater than $49 / 10.1$
"You multiply $9 / 10$ and $7 / 8$; you come out wi th a higher number."
"7 go into 8 one time with a remainder and this is just 1.1
"In $39 / 10+7 / 8$ it will be $7+3=10$, and $39 / 10+1$ is just $3+1.1$
Had no reason for wrong choice.
'Just looks bigger."

Which is larger: $35 / 6+7 / 4$ or $85 / 6+17$
" 1 is 9 reater than $7 i$." (12 pupils)
"I is a whole number and $7 / 4$ is just a fraction of a whole."
$" 8+1$ is 9 and $95 / 6$ is greater than $812 / 10 "(7+5=12$, $6+10=4)$.
" 8 ? $6+7 / 4$ won't give more than $95 / 6 . "$
"7/it is part of 1.1
No reason recorded for wrong choice.
"You get all the pie instead of just 7 (pieces) of 4 pies."
"1 is a whole and $7 / 4$ is part of a whole." (5 pupils)

Hich is larger: $\quad 95 / 6+7 / 4$ or $\quad 35 / 6+1 ?$
$1: 85 / 6+7 / 4=$ ㅇ $12 / 10=92 / 10 ; 05 / 6+1=$? 5/6."
"7/4 doesn't make a whole number and 1 does." (2 pupils)
$" 85 / 6+1=95 / 6$ and $35 / 6+7 / 4$ would only be ? $12 / 6 . "$
"7 can't go into 4."
"7/4 is not as large as 1.1
"7/4 is not even half of one."
" $7 / 4$ is not an improper fraction (meaning mixed number).'
" $8+1$ is 9 and $35 / 6+7 / 4$ would be δ and something."
"A whole is greater than $7 / 4$.'
" $85 / 6+1$ would be $95 / 6$ and $35 / 6+7 / 4$ would be ? 7/4."
"On the left you end up with 8 and a fraction, and on the right you get $35 / 5+1 . "$
"1 is a whole and $7 / 4$ is still a small piece."
"l is a whole number which is areater than a fraction."
! ! ich is larger:_ 10 1/与-7/8 or 10 1/9-1?
" $101 / 9$ is on both sides, change 1 to a fraction of $3 / 8$. Then $8 / 3$ is greater than 7/8."
"if you subtract the 1 from the 9 of $101 / 9$ you get 10 1i8.
"If you subtract 8 of $7 / 3$ from the 9 of $101 / 9$ you gel $101 / 1$ which is greater than $10 \mathrm{I} / 8.1$
" 1 is more than $7 / 8.1$ (4 pupils)
icason not recorded.
"7/8 ain't a whole number."
"l don't know why."
"10 1/9 cancels 10 1/9 and a whole is greater than 7/8."
"It is better to subtract 1 whole than to subtract the fraction."
$" 10$ 1/9-1 is greater than $101 / 9-7 / 8.1$
"This is a whole and that's just 7/8."
"You subtract 1 from $101 / 9$ you get $91 / ?$, you subtract $7 / 8$ from $10 \mathrm{l} / 9$, you get 7 from 1 is nothing and 8 from ? is just $1 .{ }^{\prime \prime}$
iI) is a whole number and $7 / B$ is half of a whole."
" 1 is a whole and $7 / 8$ is not a whole."
Answer incomplete.
"I/hen you subtract $1 / 9$ and $7 / 3$ you come out with a lower number." No reason given, for wrong choice.
"7./8 is almost 2 inches and 1 is only 1 " (from shop class).
"I would have to guess $101 / \Omega-1$ because the rest of them (the previous exercises) $n 0$ along with it."
"10 $1 / 9-1=91 / 9$; you get a C.D. for 9 and 8 and the numerators would be larger; that would make the $101 / 9$ smaller."
"7/8 is almost 2 wholes and 1 is only 1 whole."
"Uhen you take $?$ (of $1 / 9$) from 3 (of $7 / 8$) it's gonna be 1 anyway."
"If you take $7 / 8$ from $101 / 9$ you will come out less than if you take 1 from it because $7 / 8$ is less than $1 .{ }^{11}$

Which is larger: _ $123 / 8-5 / 4$ o:_ $123 / 8-i ?$
" $5 / 4$ is less than 1 . If you subtract less than one you get mor? than if you subtract more than 1.':
" $5 / 4$ is greater than $1 . "$ (13 pupils)
"If you take away 1 you get 0 ; if you take away $5 / 4$ you have something left."
"12 2/4 $\left(\frac{3-5}{8-4}\right)$ is larger than $113 / 8$ (12 3/8-1)."
No reason given for wrong choice.
1!5/4 is more than a whole."
" $5 / 4$ is an improper fraction, change to a mixed number it would have a remainder, making it greater than l."
"12 3/8-1 would make the 12 eleven; $123 / 8$ - $5 / 4$ you would stili have 12.:
"If you take 1 from $123 / 3$ you'll have 11 and something; if you take $5 / 4$ from that, you'li have 12 and something. ':
"12 3/8 - I will be taking away 1 whole; and 1 is greatel than 5/1 so you'll be taking away more."
"!/f is liot layuct than 1 , but if you be minusing it, it would be larger than $1 .{ }^{\prime}$
" $123 / 8=1113 / 8 ; 13$ take away 5 is 8 , so $123 / 8-5 / 4=113 / 8$; $123 / 8-1=113 / 8$ and $118 / 8$ is greater than $113 / 8.11$
" $5 / 4$ is a mixed number and that'd make a bigger number if you broke it down than the 1.1
"If you take $5 / 4$ from this, it would not be as large as taking 1 from this."
"C.D. would be 8 , then multiply numerators by what goes into that, and that would be a smaller number that 70 into that 12.:
"12 $3 / 8-1=113 / 8$, that'll still be 12 because a fraction is not 1.1
"l is greater than $5 / 4$ so you take amay more with 1.1 (2 pupils)
!!o reason.
"You can subtract $5 / 4$ and still have 12.1
:12-1 = 11 and $123 / 8-5 / 4$ would stay $12 . "$
"5/4 is less than a whole."
"You will have some left because $5 / 4$ is not a whole. In the case of the 1 , the whole thing will be gone."

[^0]: * This exercise was not used in interviews in the last 2 schools.

[^1]: * This metiod will yield correct answers if C.D. is nroduct of denominitors.

